Commutative integral bounded residuated lattices with an added involution
- Autores
- Cignoli, R.; Esteva, F.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A symmetric residuated lattice is an algebra A = (A, ∨, ∧, *, →, ∼, 1, 0) such that (A, ∨, ∧, *, →, 1, 0) is a commutative integral bounded residuated lattice and the equations ∼ ∼ x = x and ∼ (x ∨ y) = ∼ x ∧ ∼ y are satisfied. The aim of the paper is to investigate the properties of the unary operation ε defined by the prescription ε x = ∼ x → 0. We give necessary and sufficient conditions for ε being an interior operator. Since these conditions are rather restrictive (for instance, on a symmetric Heyting algebra ε is an interior operator if and only the equation (x → 0) ∨ ((x → 0) → 0) = 1 is satisfied) we consider when an iteration of ε is an interior operator. In particular we consider the chain of varieties of symmetric residuated lattices such that the n iteration of ε is a boolean interior operator. For instance, we show that these varieties are semisimple. When n = 1, we obtain the variety of symmetric stonean residuated lattices. We also characterize the subvarieties admitting representations as subdirect products of chains. These results generalize and in many cases also simplify, results existing in the literature. © 2009 Elsevier B.V. All rights reserved.
- Fuente
- Ann. Pure Appl. Logic 2009;161(2):150-160
- Materia
-
Interior operators
Order reversing involutions
Pseudocomplemented residuated lattices
Residuated lattices
Stonean residuated lattices - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_01680072_v161_n2_p150_Cignoli
Ver los metadatos del registro completo
id |
BDUBAFCEN_42aca963cb9472bd99b5132920094c6c |
---|---|
oai_identifier_str |
paperaa:paper_01680072_v161_n2_p150_Cignoli |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Commutative integral bounded residuated lattices with an added involutionCignoli, R.Esteva, F.Interior operatorsOrder reversing involutionsPseudocomplemented residuated latticesResiduated latticesStonean residuated latticesA symmetric residuated lattice is an algebra A = (A, ∨, ∧, *, →, ∼, 1, 0) such that (A, ∨, ∧, *, →, 1, 0) is a commutative integral bounded residuated lattice and the equations ∼ ∼ x = x and ∼ (x ∨ y) = ∼ x ∧ ∼ y are satisfied. The aim of the paper is to investigate the properties of the unary operation ε defined by the prescription ε x = ∼ x → 0. We give necessary and sufficient conditions for ε being an interior operator. Since these conditions are rather restrictive (for instance, on a symmetric Heyting algebra ε is an interior operator if and only the equation (x → 0) ∨ ((x → 0) → 0) = 1 is satisfied) we consider when an iteration of ε is an interior operator. In particular we consider the chain of varieties of symmetric residuated lattices such that the n iteration of ε is a boolean interior operator. For instance, we show that these varieties are semisimple. When n = 1, we obtain the variety of symmetric stonean residuated lattices. We also characterize the subvarieties admitting representations as subdirect products of chains. These results generalize and in many cases also simplify, results existing in the literature. © 2009 Elsevier B.V. All rights reserved.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_01680072_v161_n2_p150_CignoliAnn. Pure Appl. Logic 2009;161(2):150-160reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:37Zpaperaa:paper_01680072_v161_n2_p150_CignoliInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.237Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Commutative integral bounded residuated lattices with an added involution |
title |
Commutative integral bounded residuated lattices with an added involution |
spellingShingle |
Commutative integral bounded residuated lattices with an added involution Cignoli, R. Interior operators Order reversing involutions Pseudocomplemented residuated lattices Residuated lattices Stonean residuated lattices |
title_short |
Commutative integral bounded residuated lattices with an added involution |
title_full |
Commutative integral bounded residuated lattices with an added involution |
title_fullStr |
Commutative integral bounded residuated lattices with an added involution |
title_full_unstemmed |
Commutative integral bounded residuated lattices with an added involution |
title_sort |
Commutative integral bounded residuated lattices with an added involution |
dc.creator.none.fl_str_mv |
Cignoli, R. Esteva, F. |
author |
Cignoli, R. |
author_facet |
Cignoli, R. Esteva, F. |
author_role |
author |
author2 |
Esteva, F. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Interior operators Order reversing involutions Pseudocomplemented residuated lattices Residuated lattices Stonean residuated lattices |
topic |
Interior operators Order reversing involutions Pseudocomplemented residuated lattices Residuated lattices Stonean residuated lattices |
dc.description.none.fl_txt_mv |
A symmetric residuated lattice is an algebra A = (A, ∨, ∧, *, →, ∼, 1, 0) such that (A, ∨, ∧, *, →, 1, 0) is a commutative integral bounded residuated lattice and the equations ∼ ∼ x = x and ∼ (x ∨ y) = ∼ x ∧ ∼ y are satisfied. The aim of the paper is to investigate the properties of the unary operation ε defined by the prescription ε x = ∼ x → 0. We give necessary and sufficient conditions for ε being an interior operator. Since these conditions are rather restrictive (for instance, on a symmetric Heyting algebra ε is an interior operator if and only the equation (x → 0) ∨ ((x → 0) → 0) = 1 is satisfied) we consider when an iteration of ε is an interior operator. In particular we consider the chain of varieties of symmetric residuated lattices such that the n iteration of ε is a boolean interior operator. For instance, we show that these varieties are semisimple. When n = 1, we obtain the variety of symmetric stonean residuated lattices. We also characterize the subvarieties admitting representations as subdirect products of chains. These results generalize and in many cases also simplify, results existing in the literature. © 2009 Elsevier B.V. All rights reserved. |
description |
A symmetric residuated lattice is an algebra A = (A, ∨, ∧, *, →, ∼, 1, 0) such that (A, ∨, ∧, *, →, 1, 0) is a commutative integral bounded residuated lattice and the equations ∼ ∼ x = x and ∼ (x ∨ y) = ∼ x ∧ ∼ y are satisfied. The aim of the paper is to investigate the properties of the unary operation ε defined by the prescription ε x = ∼ x → 0. We give necessary and sufficient conditions for ε being an interior operator. Since these conditions are rather restrictive (for instance, on a symmetric Heyting algebra ε is an interior operator if and only the equation (x → 0) ∨ ((x → 0) → 0) = 1 is satisfied) we consider when an iteration of ε is an interior operator. In particular we consider the chain of varieties of symmetric residuated lattices such that the n iteration of ε is a boolean interior operator. For instance, we show that these varieties are semisimple. When n = 1, we obtain the variety of symmetric stonean residuated lattices. We also characterize the subvarieties admitting representations as subdirect products of chains. These results generalize and in many cases also simplify, results existing in the literature. © 2009 Elsevier B.V. All rights reserved. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_01680072_v161_n2_p150_Cignoli |
url |
http://hdl.handle.net/20.500.12110/paper_01680072_v161_n2_p150_Cignoli |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Ann. Pure Appl. Logic 2009;161(2):150-160 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340705209417728 |
score |
12.623145 |