Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian
- Autores
- Lavalle, Natalia Guillermina; Chara, Osvaldo; Grigera, Tomas Sebastian
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tissue growth is an emerging phenomenon that results from the cell-level interplay between proliferation and apoptosis, which is crucial during embryonic development, tissue regeneration, as well as in pathological conditions such as cancer. In this theoretical article, we address the problem of stochasticity in tissue growth by first considering a minimal Markovian model of tissue size, quantified as the number of cells in a simulated tissue, subjected to both proliferation and apoptosis. We find two dynamic phases, growth and decay, separated by a critical state representing a homeostatic tissue. Since the main limitation of the Markovian model is its neglect of the cell cycle, we incorporated a refractory period that temporarily prevents proliferation immediately following cell division, as a minimal proxy for the cell cycle, and studied the model in the growth phase. Importantly, we obtained from this last model an effective Markovian rate, which accurately describes general trends of tissue size. This study shows that the dynamics of tissue growth can be theoretically conceptualized as a Markovian process where homeostasis is a critical state flanked by decay and growth phases. Notably, in the growing non-Markovian model, a Markovian-like growth process emerges at large time scales.
Fil: Lavalle, Natalia Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Chara, Osvaldo. University of Nottingham; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina - Materia
-
tissue growth
time correlation
cell proliferation
non-Markovian model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/250823
Ver los metadatos del registro completo
| id |
CONICETDig_043834db1d647e76245be4d77cc6c886 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/250823 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as MarkovianLavalle, Natalia GuillerminaChara, OsvaldoGrigera, Tomas Sebastiantissue growthtime correlationcell proliferationnon-Markovian modelhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Tissue growth is an emerging phenomenon that results from the cell-level interplay between proliferation and apoptosis, which is crucial during embryonic development, tissue regeneration, as well as in pathological conditions such as cancer. In this theoretical article, we address the problem of stochasticity in tissue growth by first considering a minimal Markovian model of tissue size, quantified as the number of cells in a simulated tissue, subjected to both proliferation and apoptosis. We find two dynamic phases, growth and decay, separated by a critical state representing a homeostatic tissue. Since the main limitation of the Markovian model is its neglect of the cell cycle, we incorporated a refractory period that temporarily prevents proliferation immediately following cell division, as a minimal proxy for the cell cycle, and studied the model in the growth phase. Importantly, we obtained from this last model an effective Markovian rate, which accurately describes general trends of tissue size. This study shows that the dynamics of tissue growth can be theoretically conceptualized as a Markovian process where homeostasis is a critical state flanked by decay and growth phases. Notably, in the growing non-Markovian model, a Markovian-like growth process emerges at large time scales.Fil: Lavalle, Natalia Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Chara, Osvaldo. University of Nottingham; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaThe Royal Society2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/250823Lavalle, Natalia Guillermina; Chara, Osvaldo; Grigera, Tomas Sebastian; Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian; The Royal Society; Royal Society Open Science; 10; 9; 8-2023; 23087q, 1-122054-5703CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1098/rsos.230871info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsos.230871info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:58:57Zoai:ri.conicet.gov.ar:11336/250823instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:58:57.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian |
| title |
Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian |
| spellingShingle |
Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian Lavalle, Natalia Guillermina tissue growth time correlation cell proliferation non-Markovian model |
| title_short |
Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian |
| title_full |
Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian |
| title_fullStr |
Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian |
| title_full_unstemmed |
Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian |
| title_sort |
Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian |
| dc.creator.none.fl_str_mv |
Lavalle, Natalia Guillermina Chara, Osvaldo Grigera, Tomas Sebastian |
| author |
Lavalle, Natalia Guillermina |
| author_facet |
Lavalle, Natalia Guillermina Chara, Osvaldo Grigera, Tomas Sebastian |
| author_role |
author |
| author2 |
Chara, Osvaldo Grigera, Tomas Sebastian |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
tissue growth time correlation cell proliferation non-Markovian model |
| topic |
tissue growth time correlation cell proliferation non-Markovian model |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Tissue growth is an emerging phenomenon that results from the cell-level interplay between proliferation and apoptosis, which is crucial during embryonic development, tissue regeneration, as well as in pathological conditions such as cancer. In this theoretical article, we address the problem of stochasticity in tissue growth by first considering a minimal Markovian model of tissue size, quantified as the number of cells in a simulated tissue, subjected to both proliferation and apoptosis. We find two dynamic phases, growth and decay, separated by a critical state representing a homeostatic tissue. Since the main limitation of the Markovian model is its neglect of the cell cycle, we incorporated a refractory period that temporarily prevents proliferation immediately following cell division, as a minimal proxy for the cell cycle, and studied the model in the growth phase. Importantly, we obtained from this last model an effective Markovian rate, which accurately describes general trends of tissue size. This study shows that the dynamics of tissue growth can be theoretically conceptualized as a Markovian process where homeostasis is a critical state flanked by decay and growth phases. Notably, in the growing non-Markovian model, a Markovian-like growth process emerges at large time scales. Fil: Lavalle, Natalia Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Chara, Osvaldo. University of Nottingham; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina |
| description |
Tissue growth is an emerging phenomenon that results from the cell-level interplay between proliferation and apoptosis, which is crucial during embryonic development, tissue regeneration, as well as in pathological conditions such as cancer. In this theoretical article, we address the problem of stochasticity in tissue growth by first considering a minimal Markovian model of tissue size, quantified as the number of cells in a simulated tissue, subjected to both proliferation and apoptosis. We find two dynamic phases, growth and decay, separated by a critical state representing a homeostatic tissue. Since the main limitation of the Markovian model is its neglect of the cell cycle, we incorporated a refractory period that temporarily prevents proliferation immediately following cell division, as a minimal proxy for the cell cycle, and studied the model in the growth phase. Importantly, we obtained from this last model an effective Markovian rate, which accurately describes general trends of tissue size. This study shows that the dynamics of tissue growth can be theoretically conceptualized as a Markovian process where homeostasis is a critical state flanked by decay and growth phases. Notably, in the growing non-Markovian model, a Markovian-like growth process emerges at large time scales. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/250823 Lavalle, Natalia Guillermina; Chara, Osvaldo; Grigera, Tomas Sebastian; Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian; The Royal Society; Royal Society Open Science; 10; 9; 8-2023; 23087q, 1-12 2054-5703 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/250823 |
| identifier_str_mv |
Lavalle, Natalia Guillermina; Chara, Osvaldo; Grigera, Tomas Sebastian; Fluctuations in tissue growth portray homeostasis as a critical state and long-time non-Markovian cell proliferation as Markovian; The Royal Society; Royal Society Open Science; 10; 9; 8-2023; 23087q, 1-12 2054-5703 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1098/rsos.230871 info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsos.230871 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
The Royal Society |
| publisher.none.fl_str_mv |
The Royal Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335886370340864 |
| score |
12.952241 |