Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons

Autores
Tubert, Cecilia; Zampese, E.; Pancani, T.; Tkatch, T.; Surmeier, D .J.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Like a handful of other neuronal types in the brain, cholinergic neurons (CNs) in the pedunculopontine nucleus (PPN) are lost during Parkinson's disease (PD). Why this is the case is unknown. One neuronal trait implicated in PD selective neuronal vulnerability is the engagement of feed-forward stimulation of mitochondrial oxidative phosphorylation (OXPHOS) to meet high bioenergetic demand, leading to sustained oxidant stress and ultimately degeneration. The extent to which this trait is shared by PPN CNs is unresolved. To address this question, a combination of molecular and physiological approaches were used. These studies revealed that PPN CNs are autonomous pacemakers with modest spike-associated cytosolic Ca2+ transients. These Ca2+ transients were partly attributable to the opening of high-threshold Cav1.2 Ca2+ channels, but not Cav1.3 channels. Cav1.2 channel signaling through endoplasmic reticulum ryanodine receptors stimulated mitochondrial OXPHOS to help maintain cytosolic adenosine triphosphate (ATP) levels necessary for pacemaking. Inhibition of Cav1.2 channels led to the recruitment of ATP-sensitive K+ channels and the slowing of pacemaking. A ‘side-effect’ of Cav1.2 channel-mediated stimulation of mitochondria was increased oxidant stress. Thus, PPN CNs have a distinctive physiological phenotype that shares some, but not all, of the features of other neurons that are selectively vulnerable in PD.
Fil: Tubert, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
Fil: Zampese, E.. Northwestern University; Estados Unidos
Fil: Pancani, T.. Northwestern University; Estados Unidos
Fil: Tkatch, T.. Northwestern University; Estados Unidos
Fil: Surmeier, D .J.. Northwestern University; Estados Unidos
Materia
ATP-SENSITIVE K+ CHANNELS
CALCIUM VOLTAGE-DEPENDENT CHANNELS
MITOCONDRIAL OXIDATIVE PHOSPHORILATION
PARKINSON'S DISEASE
PPN CHOLINERGIC NEURONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/223011

id CONICETDig_03eeae344b91a6f4472ecf3c212a7c58
oai_identifier_str oai:ri.conicet.gov.ar:11336/223011
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neuronsTubert, CeciliaZampese, E.Pancani, T.Tkatch, T.Surmeier, D .J.ATP-SENSITIVE K+ CHANNELSCALCIUM VOLTAGE-DEPENDENT CHANNELSMITOCONDRIAL OXIDATIVE PHOSPHORILATIONPARKINSON'S DISEASEPPN CHOLINERGIC NEURONShttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Like a handful of other neuronal types in the brain, cholinergic neurons (CNs) in the pedunculopontine nucleus (PPN) are lost during Parkinson's disease (PD). Why this is the case is unknown. One neuronal trait implicated in PD selective neuronal vulnerability is the engagement of feed-forward stimulation of mitochondrial oxidative phosphorylation (OXPHOS) to meet high bioenergetic demand, leading to sustained oxidant stress and ultimately degeneration. The extent to which this trait is shared by PPN CNs is unresolved. To address this question, a combination of molecular and physiological approaches were used. These studies revealed that PPN CNs are autonomous pacemakers with modest spike-associated cytosolic Ca2+ transients. These Ca2+ transients were partly attributable to the opening of high-threshold Cav1.2 Ca2+ channels, but not Cav1.3 channels. Cav1.2 channel signaling through endoplasmic reticulum ryanodine receptors stimulated mitochondrial OXPHOS to help maintain cytosolic adenosine triphosphate (ATP) levels necessary for pacemaking. Inhibition of Cav1.2 channels led to the recruitment of ATP-sensitive K+ channels and the slowing of pacemaking. A ‘side-effect’ of Cav1.2 channel-mediated stimulation of mitochondria was increased oxidant stress. Thus, PPN CNs have a distinctive physiological phenotype that shares some, but not all, of the features of other neurons that are selectively vulnerable in PD.Fil: Tubert, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Zampese, E.. Northwestern University; Estados UnidosFil: Pancani, T.. Northwestern University; Estados UnidosFil: Tkatch, T.. Northwestern University; Estados UnidosFil: Surmeier, D .J.. Northwestern University; Estados UnidosAcademic Press Inc Elsevier Science2023-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/223011Tubert, Cecilia; Zampese, E.; Pancani, T.; Tkatch, T.; Surmeier, D .J.; Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons; Academic Press Inc Elsevier Science; Neurobiology of Disease; 188; 11-2023; 1-140969-9961CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.nbd.2023.106328info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:21Zoai:ri.conicet.gov.ar:11336/223011instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:21.372CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons
title Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons
spellingShingle Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons
Tubert, Cecilia
ATP-SENSITIVE K+ CHANNELS
CALCIUM VOLTAGE-DEPENDENT CHANNELS
MITOCONDRIAL OXIDATIVE PHOSPHORILATION
PARKINSON'S DISEASE
PPN CHOLINERGIC NEURONS
title_short Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons
title_full Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons
title_fullStr Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons
title_full_unstemmed Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons
title_sort Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons
dc.creator.none.fl_str_mv Tubert, Cecilia
Zampese, E.
Pancani, T.
Tkatch, T.
Surmeier, D .J.
author Tubert, Cecilia
author_facet Tubert, Cecilia
Zampese, E.
Pancani, T.
Tkatch, T.
Surmeier, D .J.
author_role author
author2 Zampese, E.
Pancani, T.
Tkatch, T.
Surmeier, D .J.
author2_role author
author
author
author
dc.subject.none.fl_str_mv ATP-SENSITIVE K+ CHANNELS
CALCIUM VOLTAGE-DEPENDENT CHANNELS
MITOCONDRIAL OXIDATIVE PHOSPHORILATION
PARKINSON'S DISEASE
PPN CHOLINERGIC NEURONS
topic ATP-SENSITIVE K+ CHANNELS
CALCIUM VOLTAGE-DEPENDENT CHANNELS
MITOCONDRIAL OXIDATIVE PHOSPHORILATION
PARKINSON'S DISEASE
PPN CHOLINERGIC NEURONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Like a handful of other neuronal types in the brain, cholinergic neurons (CNs) in the pedunculopontine nucleus (PPN) are lost during Parkinson's disease (PD). Why this is the case is unknown. One neuronal trait implicated in PD selective neuronal vulnerability is the engagement of feed-forward stimulation of mitochondrial oxidative phosphorylation (OXPHOS) to meet high bioenergetic demand, leading to sustained oxidant stress and ultimately degeneration. The extent to which this trait is shared by PPN CNs is unresolved. To address this question, a combination of molecular and physiological approaches were used. These studies revealed that PPN CNs are autonomous pacemakers with modest spike-associated cytosolic Ca2+ transients. These Ca2+ transients were partly attributable to the opening of high-threshold Cav1.2 Ca2+ channels, but not Cav1.3 channels. Cav1.2 channel signaling through endoplasmic reticulum ryanodine receptors stimulated mitochondrial OXPHOS to help maintain cytosolic adenosine triphosphate (ATP) levels necessary for pacemaking. Inhibition of Cav1.2 channels led to the recruitment of ATP-sensitive K+ channels and the slowing of pacemaking. A ‘side-effect’ of Cav1.2 channel-mediated stimulation of mitochondria was increased oxidant stress. Thus, PPN CNs have a distinctive physiological phenotype that shares some, but not all, of the features of other neurons that are selectively vulnerable in PD.
Fil: Tubert, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
Fil: Zampese, E.. Northwestern University; Estados Unidos
Fil: Pancani, T.. Northwestern University; Estados Unidos
Fil: Tkatch, T.. Northwestern University; Estados Unidos
Fil: Surmeier, D .J.. Northwestern University; Estados Unidos
description Like a handful of other neuronal types in the brain, cholinergic neurons (CNs) in the pedunculopontine nucleus (PPN) are lost during Parkinson's disease (PD). Why this is the case is unknown. One neuronal trait implicated in PD selective neuronal vulnerability is the engagement of feed-forward stimulation of mitochondrial oxidative phosphorylation (OXPHOS) to meet high bioenergetic demand, leading to sustained oxidant stress and ultimately degeneration. The extent to which this trait is shared by PPN CNs is unresolved. To address this question, a combination of molecular and physiological approaches were used. These studies revealed that PPN CNs are autonomous pacemakers with modest spike-associated cytosolic Ca2+ transients. These Ca2+ transients were partly attributable to the opening of high-threshold Cav1.2 Ca2+ channels, but not Cav1.3 channels. Cav1.2 channel signaling through endoplasmic reticulum ryanodine receptors stimulated mitochondrial OXPHOS to help maintain cytosolic adenosine triphosphate (ATP) levels necessary for pacemaking. Inhibition of Cav1.2 channels led to the recruitment of ATP-sensitive K+ channels and the slowing of pacemaking. A ‘side-effect’ of Cav1.2 channel-mediated stimulation of mitochondria was increased oxidant stress. Thus, PPN CNs have a distinctive physiological phenotype that shares some, but not all, of the features of other neurons that are selectively vulnerable in PD.
publishDate 2023
dc.date.none.fl_str_mv 2023-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/223011
Tubert, Cecilia; Zampese, E.; Pancani, T.; Tkatch, T.; Surmeier, D .J.; Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons; Academic Press Inc Elsevier Science; Neurobiology of Disease; 188; 11-2023; 1-14
0969-9961
CONICET Digital
CONICET
url http://hdl.handle.net/11336/223011
identifier_str_mv Tubert, Cecilia; Zampese, E.; Pancani, T.; Tkatch, T.; Surmeier, D .J.; Feed-forward metabotropic signaling by Cav1 Ca2+ channels supports pacemaking in pedunculopontine cholinergic neurons; Academic Press Inc Elsevier Science; Neurobiology of Disease; 188; 11-2023; 1-14
0969-9961
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nbd.2023.106328
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270077484793856
score 13.13397