QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation
- Autores
- Diez, Sebastian; Lacy, Stuart; Urquiza, Josefina; Edwards, Pete
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The QUANT study represents the most extensive open-access evaluation of commercial air quality sensor systems to date. This comprehensive study assessed 49 systems from 14 manufacturers across three urban sites in the UK over a three-year period. The resulting open-access dataset captures high time-resolution measurements of a variety of gasses (NO, NO2, O3, CO, CO2), particulate matter (PM1, PM2.5, PM10), and key meteorological parameters (humidity, temperature, atmospheric pressure). The quality and scope of the dataset is enhanced by reference monitors’ data and calibrated products from sensor manufacturers across the three sites. This publicly accessible dataset serves as a robust and transparent resource that details the methods used for data collection and procedures to ensure dataset integrity. It provides a valuable tool for a wide range of stakeholders to analyze the performance of air quality sensors in real-world settings. Policymakers can leverage this data to refine sensor deployment guidelines and develop standardized protocols, while manufacturers can utilize it as a benchmark for technological innovation and product certification. Moreover, the dataset has supported the development of a UK code of practice, and the certification of one of the participating companies, underscoring the dataset’s utility and reliability.
Fil: Diez, Sebastian. Universidad del Desarrollo; Chile
Fil: Lacy, Stuart. University of York; Reino Unido
Fil: Urquiza, Josefina. Universidad Tecnologica Nacional. Facultad Regional Cordoba. Secretaria de Posgrado.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Edwards, Pete. University of York; Reino Unido - Materia
-
OPEN ACCESS DATA
AIR QUALITY
LOW COST SENSOR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/250528
Ver los metadatos del registro completo
id |
CONICETDig_01d7c26061480935743bbf63bbf39882 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/250528 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
QUANT: a long-term multi-city commercial air sensor dataset for performance evaluationDiez, SebastianLacy, StuartUrquiza, JosefinaEdwards, PeteOPEN ACCESS DATAAIR QUALITYLOW COST SENSORhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The QUANT study represents the most extensive open-access evaluation of commercial air quality sensor systems to date. This comprehensive study assessed 49 systems from 14 manufacturers across three urban sites in the UK over a three-year period. The resulting open-access dataset captures high time-resolution measurements of a variety of gasses (NO, NO2, O3, CO, CO2), particulate matter (PM1, PM2.5, PM10), and key meteorological parameters (humidity, temperature, atmospheric pressure). The quality and scope of the dataset is enhanced by reference monitors’ data and calibrated products from sensor manufacturers across the three sites. This publicly accessible dataset serves as a robust and transparent resource that details the methods used for data collection and procedures to ensure dataset integrity. It provides a valuable tool for a wide range of stakeholders to analyze the performance of air quality sensors in real-world settings. Policymakers can leverage this data to refine sensor deployment guidelines and develop standardized protocols, while manufacturers can utilize it as a benchmark for technological innovation and product certification. Moreover, the dataset has supported the development of a UK code of practice, and the certification of one of the participating companies, underscoring the dataset’s utility and reliability.Fil: Diez, Sebastian. Universidad del Desarrollo; ChileFil: Lacy, Stuart. University of York; Reino UnidoFil: Urquiza, Josefina. Universidad Tecnologica Nacional. Facultad Regional Cordoba. Secretaria de Posgrado.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Edwards, Pete. University of York; Reino UnidoNature Publishing Group2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/250528Diez, Sebastian; Lacy, Stuart; Urquiza, Josefina; Edwards, Pete; QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation; Nature Publishing Group; Scientific Data; 11; 1; 8-2024; 1-162052-4463CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41597-024-03767-2info:eu-repo/semantics/altIdentifier/doi/10.1038/s41597-024-03767-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:18Zoai:ri.conicet.gov.ar:11336/250528instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:18.551CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation |
title |
QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation |
spellingShingle |
QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation Diez, Sebastian OPEN ACCESS DATA AIR QUALITY LOW COST SENSOR |
title_short |
QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation |
title_full |
QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation |
title_fullStr |
QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation |
title_full_unstemmed |
QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation |
title_sort |
QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation |
dc.creator.none.fl_str_mv |
Diez, Sebastian Lacy, Stuart Urquiza, Josefina Edwards, Pete |
author |
Diez, Sebastian |
author_facet |
Diez, Sebastian Lacy, Stuart Urquiza, Josefina Edwards, Pete |
author_role |
author |
author2 |
Lacy, Stuart Urquiza, Josefina Edwards, Pete |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
OPEN ACCESS DATA AIR QUALITY LOW COST SENSOR |
topic |
OPEN ACCESS DATA AIR QUALITY LOW COST SENSOR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The QUANT study represents the most extensive open-access evaluation of commercial air quality sensor systems to date. This comprehensive study assessed 49 systems from 14 manufacturers across three urban sites in the UK over a three-year period. The resulting open-access dataset captures high time-resolution measurements of a variety of gasses (NO, NO2, O3, CO, CO2), particulate matter (PM1, PM2.5, PM10), and key meteorological parameters (humidity, temperature, atmospheric pressure). The quality and scope of the dataset is enhanced by reference monitors’ data and calibrated products from sensor manufacturers across the three sites. This publicly accessible dataset serves as a robust and transparent resource that details the methods used for data collection and procedures to ensure dataset integrity. It provides a valuable tool for a wide range of stakeholders to analyze the performance of air quality sensors in real-world settings. Policymakers can leverage this data to refine sensor deployment guidelines and develop standardized protocols, while manufacturers can utilize it as a benchmark for technological innovation and product certification. Moreover, the dataset has supported the development of a UK code of practice, and the certification of one of the participating companies, underscoring the dataset’s utility and reliability. Fil: Diez, Sebastian. Universidad del Desarrollo; Chile Fil: Lacy, Stuart. University of York; Reino Unido Fil: Urquiza, Josefina. Universidad Tecnologica Nacional. Facultad Regional Cordoba. Secretaria de Posgrado.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Edwards, Pete. University of York; Reino Unido |
description |
The QUANT study represents the most extensive open-access evaluation of commercial air quality sensor systems to date. This comprehensive study assessed 49 systems from 14 manufacturers across three urban sites in the UK over a three-year period. The resulting open-access dataset captures high time-resolution measurements of a variety of gasses (NO, NO2, O3, CO, CO2), particulate matter (PM1, PM2.5, PM10), and key meteorological parameters (humidity, temperature, atmospheric pressure). The quality and scope of the dataset is enhanced by reference monitors’ data and calibrated products from sensor manufacturers across the three sites. This publicly accessible dataset serves as a robust and transparent resource that details the methods used for data collection and procedures to ensure dataset integrity. It provides a valuable tool for a wide range of stakeholders to analyze the performance of air quality sensors in real-world settings. Policymakers can leverage this data to refine sensor deployment guidelines and develop standardized protocols, while manufacturers can utilize it as a benchmark for technological innovation and product certification. Moreover, the dataset has supported the development of a UK code of practice, and the certification of one of the participating companies, underscoring the dataset’s utility and reliability. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/250528 Diez, Sebastian; Lacy, Stuart; Urquiza, Josefina; Edwards, Pete; QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation; Nature Publishing Group; Scientific Data; 11; 1; 8-2024; 1-16 2052-4463 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/250528 |
identifier_str_mv |
Diez, Sebastian; Lacy, Stuart; Urquiza, Josefina; Edwards, Pete; QUANT: a long-term multi-city commercial air sensor dataset for performance evaluation; Nature Publishing Group; Scientific Data; 11; 1; 8-2024; 1-16 2052-4463 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41597-024-03767-2 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41597-024-03767-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268849558257664 |
score |
13.13397 |