Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir
- Autores
- Ledesma, María Micaela; Bonansea, Matias; Ledesma, Claudia; Rodríguez, Claudia; Carreño, Joel; Pinotti, Lucio Pedro
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The physico-chemical and biological composition of a reservoir's effluents directly influences water quality. The values of variables such as high values of concentrations of chlorophyll-a (Chl-a) are indicators of pollution. The objective of this work was to monitor the trophic status and water quality of the Cassaffousth reservoir (Córdoba, Argentina) through the development of statistical models based on field data and satellite information. During 2016 and 2017, samples were taken bimonthly. Seven sampling sites were selected and physico-chemical and biological parameters were assessed. By using regression techniques, Landsat 8 information was related with field data to construct and validate a statistical model to determine the distribution of Chl-a in the reservoir (R2 = 0.87). The generated algorithm was used to generate maps which contained information about the dynamics of Chl-a in the entire reservoir. Remote sensing techniques can be used to expand the knowledge of the dynamics of the Cassaffousth reservoir. Moreover, these techniques can be used as baselines for the development of an early warning system for this and other reservoirs in the region.
Fil: Ledesma, María Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Estudios Básicos y Agropecuarios; Argentina
Fil: Bonansea, Matias. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente; Argentina
Fil: Ledesma, Claudia. Universidad Nacional de Río Cuarto; Argentina
Fil: Rodríguez, Claudia. Universidad Nacional de Río Cuarto; Argentina
Fil: Carreño, Joel. Universidad Nacional de Río Cuarto; Argentina
Fil: Pinotti, Lucio Pedro. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente; Argentina - Materia
-
CHLOROPHYLL-A
LANDSAT 8
PREDICTIVE MODELS
RESERVOIR
WATER QUALITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/123226
Ver los metadatos del registro completo
id |
CONICETDig_017f57e890c5147858a8f6db57cda939 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/123226 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoirLedesma, María MicaelaBonansea, MatiasLedesma, ClaudiaRodríguez, ClaudiaCarreño, JoelPinotti, Lucio PedroCHLOROPHYLL-ALANDSAT 8PREDICTIVE MODELSRESERVOIRWATER QUALITYhttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2The physico-chemical and biological composition of a reservoir's effluents directly influences water quality. The values of variables such as high values of concentrations of chlorophyll-a (Chl-a) are indicators of pollution. The objective of this work was to monitor the trophic status and water quality of the Cassaffousth reservoir (Córdoba, Argentina) through the development of statistical models based on field data and satellite information. During 2016 and 2017, samples were taken bimonthly. Seven sampling sites were selected and physico-chemical and biological parameters were assessed. By using regression techniques, Landsat 8 information was related with field data to construct and validate a statistical model to determine the distribution of Chl-a in the reservoir (R2 = 0.87). The generated algorithm was used to generate maps which contained information about the dynamics of Chl-a in the entire reservoir. Remote sensing techniques can be used to expand the knowledge of the dynamics of the Cassaffousth reservoir. Moreover, these techniques can be used as baselines for the development of an early warning system for this and other reservoirs in the region.Fil: Ledesma, María Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Estudios Básicos y Agropecuarios; ArgentinaFil: Bonansea, Matias. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente; ArgentinaFil: Ledesma, Claudia. Universidad Nacional de Río Cuarto; ArgentinaFil: Rodríguez, Claudia. Universidad Nacional de Río Cuarto; ArgentinaFil: Carreño, Joel. Universidad Nacional de Río Cuarto; ArgentinaFil: Pinotti, Lucio Pedro. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente; ArgentinaIWA Publishing2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123226Ledesma, María Micaela; Bonansea, Matias; Ledesma, Claudia; Rodríguez, Claudia; Carreño, Joel; et al.; Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir; IWA Publishing; Water Science and Technology: Water Supply; 19; 7; 11-2019; 2021-20271606-97491607-0798CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iwaponline.com/ws/article/doi/10.2166/ws.2019.080/67786/Estimation-of-chlorophylla-concentration-usinginfo:eu-repo/semantics/altIdentifier/doi/10.2166/ws.2019.080info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:03Zoai:ri.conicet.gov.ar:11336/123226instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:03.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir |
title |
Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir |
spellingShingle |
Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir Ledesma, María Micaela CHLOROPHYLL-A LANDSAT 8 PREDICTIVE MODELS RESERVOIR WATER QUALITY |
title_short |
Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir |
title_full |
Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir |
title_fullStr |
Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir |
title_full_unstemmed |
Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir |
title_sort |
Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir |
dc.creator.none.fl_str_mv |
Ledesma, María Micaela Bonansea, Matias Ledesma, Claudia Rodríguez, Claudia Carreño, Joel Pinotti, Lucio Pedro |
author |
Ledesma, María Micaela |
author_facet |
Ledesma, María Micaela Bonansea, Matias Ledesma, Claudia Rodríguez, Claudia Carreño, Joel Pinotti, Lucio Pedro |
author_role |
author |
author2 |
Bonansea, Matias Ledesma, Claudia Rodríguez, Claudia Carreño, Joel Pinotti, Lucio Pedro |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CHLOROPHYLL-A LANDSAT 8 PREDICTIVE MODELS RESERVOIR WATER QUALITY |
topic |
CHLOROPHYLL-A LANDSAT 8 PREDICTIVE MODELS RESERVOIR WATER QUALITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The physico-chemical and biological composition of a reservoir's effluents directly influences water quality. The values of variables such as high values of concentrations of chlorophyll-a (Chl-a) are indicators of pollution. The objective of this work was to monitor the trophic status and water quality of the Cassaffousth reservoir (Córdoba, Argentina) through the development of statistical models based on field data and satellite information. During 2016 and 2017, samples were taken bimonthly. Seven sampling sites were selected and physico-chemical and biological parameters were assessed. By using regression techniques, Landsat 8 information was related with field data to construct and validate a statistical model to determine the distribution of Chl-a in the reservoir (R2 = 0.87). The generated algorithm was used to generate maps which contained information about the dynamics of Chl-a in the entire reservoir. Remote sensing techniques can be used to expand the knowledge of the dynamics of the Cassaffousth reservoir. Moreover, these techniques can be used as baselines for the development of an early warning system for this and other reservoirs in the region. Fil: Ledesma, María Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Estudios Básicos y Agropecuarios; Argentina Fil: Bonansea, Matias. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente; Argentina Fil: Ledesma, Claudia. Universidad Nacional de Río Cuarto; Argentina Fil: Rodríguez, Claudia. Universidad Nacional de Río Cuarto; Argentina Fil: Carreño, Joel. Universidad Nacional de Río Cuarto; Argentina Fil: Pinotti, Lucio Pedro. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente; Argentina |
description |
The physico-chemical and biological composition of a reservoir's effluents directly influences water quality. The values of variables such as high values of concentrations of chlorophyll-a (Chl-a) are indicators of pollution. The objective of this work was to monitor the trophic status and water quality of the Cassaffousth reservoir (Córdoba, Argentina) through the development of statistical models based on field data and satellite information. During 2016 and 2017, samples were taken bimonthly. Seven sampling sites were selected and physico-chemical and biological parameters were assessed. By using regression techniques, Landsat 8 information was related with field data to construct and validate a statistical model to determine the distribution of Chl-a in the reservoir (R2 = 0.87). The generated algorithm was used to generate maps which contained information about the dynamics of Chl-a in the entire reservoir. Remote sensing techniques can be used to expand the knowledge of the dynamics of the Cassaffousth reservoir. Moreover, these techniques can be used as baselines for the development of an early warning system for this and other reservoirs in the region. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/123226 Ledesma, María Micaela; Bonansea, Matias; Ledesma, Claudia; Rodríguez, Claudia; Carreño, Joel; et al.; Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir; IWA Publishing; Water Science and Technology: Water Supply; 19; 7; 11-2019; 2021-2027 1606-9749 1607-0798 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/123226 |
identifier_str_mv |
Ledesma, María Micaela; Bonansea, Matias; Ledesma, Claudia; Rodríguez, Claudia; Carreño, Joel; et al.; Estimation of chlorophyll-a concentration using Landsat 8 in the Cassaffousth reservoir; IWA Publishing; Water Science and Technology: Water Supply; 19; 7; 11-2019; 2021-2027 1606-9749 1607-0798 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iwaponline.com/ws/article/doi/10.2166/ws.2019.080/67786/Estimation-of-chlorophylla-concentration-using info:eu-repo/semantics/altIdentifier/doi/10.2166/ws.2019.080 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IWA Publishing |
publisher.none.fl_str_mv |
IWA Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613467257962496 |
score |
13.070432 |