Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina)
- Autores
- Bonansea, Matias; Rodriguez, Claudia; Pinotti, Lucio Pedro; Ferrero, Susana Beatriz
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The application of remote sensing technology to water quality monitoring has special significance for lake management at regional scales. Many studies have proposed algorithms between Landsat data and in-situ water quality parameters using classical regression models. The novelty of this paper is that we developed algorithms to determine log-transformed chlorophyll-a concentration (Chl-a) and Secchi disk transparency (SDT) in Río Tercero reservoir using Landsat TM and ETM+ imagery, ancillary environmental factors and linear mixed models (LMM), obtaining an increase in the accuracy of the estimates. The validation results showed that LMM with spatial correlation structure that take into account water surface temperature (WST) and rainfall were the most suitable method for estimating these parameters. WST derived from the Landsat thermal band was also validated. The algorithms were used to generate quantitative maps providing spatially and temporally rich information on patterns of water quality throughout the reservoir. Water quality features related to the hydrogeomorphology of the reservoir, typical seasonality and influx from the cooling system of a local nuclear reactor were identified in the time series maps.
Fil: Bonansea, Matias. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Cátedra de Ecología; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente.; Argentina
Fil: Rodriguez, Claudia. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Cátedra de Ecología; Argentina
Fil: Pinotti, Lucio Pedro. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente.; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina
Fil: Ferrero, Susana Beatriz. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina - Materia
-
REMOTE SENSING
RESERVOIR
LANDSAT
WATER QUALITY
LINEAR MIXED MODELS
ALGORITHMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/102510
Ver los metadatos del registro completo
id |
CONICETDig_352305c6281bfaeb7520ceedfa2f58d1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/102510 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina)Bonansea, MatiasRodriguez, ClaudiaPinotti, Lucio PedroFerrero, Susana BeatrizREMOTE SENSINGRESERVOIRLANDSATWATER QUALITYLINEAR MIXED MODELSALGORITHMShttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2The application of remote sensing technology to water quality monitoring has special significance for lake management at regional scales. Many studies have proposed algorithms between Landsat data and in-situ water quality parameters using classical regression models. The novelty of this paper is that we developed algorithms to determine log-transformed chlorophyll-a concentration (Chl-a) and Secchi disk transparency (SDT) in Río Tercero reservoir using Landsat TM and ETM+ imagery, ancillary environmental factors and linear mixed models (LMM), obtaining an increase in the accuracy of the estimates. The validation results showed that LMM with spatial correlation structure that take into account water surface temperature (WST) and rainfall were the most suitable method for estimating these parameters. WST derived from the Landsat thermal band was also validated. The algorithms were used to generate quantitative maps providing spatially and temporally rich information on patterns of water quality throughout the reservoir. Water quality features related to the hydrogeomorphology of the reservoir, typical seasonality and influx from the cooling system of a local nuclear reactor were identified in the time series maps.Fil: Bonansea, Matias. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Cátedra de Ecología; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente.; ArgentinaFil: Rodriguez, Claudia. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Cátedra de Ecología; ArgentinaFil: Pinotti, Lucio Pedro. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente.; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; ArgentinaFil: Ferrero, Susana Beatriz. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaElsevier Science Inc2015-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102510Bonansea, Matias; Rodriguez, Claudia; Pinotti, Lucio Pedro; Ferrero, Susana Beatriz; Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina); Elsevier Science Inc; Remote Sensing of Environment; 158; 1; 1-3-2015; 28-410034-4257CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0034425714004544info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rse.2014.10.032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:06Zoai:ri.conicet.gov.ar:11336/102510instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:07.144CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina) |
title |
Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina) |
spellingShingle |
Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina) Bonansea, Matias REMOTE SENSING RESERVOIR LANDSAT WATER QUALITY LINEAR MIXED MODELS ALGORITHMS |
title_short |
Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina) |
title_full |
Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina) |
title_fullStr |
Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina) |
title_full_unstemmed |
Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina) |
title_sort |
Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina) |
dc.creator.none.fl_str_mv |
Bonansea, Matias Rodriguez, Claudia Pinotti, Lucio Pedro Ferrero, Susana Beatriz |
author |
Bonansea, Matias |
author_facet |
Bonansea, Matias Rodriguez, Claudia Pinotti, Lucio Pedro Ferrero, Susana Beatriz |
author_role |
author |
author2 |
Rodriguez, Claudia Pinotti, Lucio Pedro Ferrero, Susana Beatriz |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
REMOTE SENSING RESERVOIR LANDSAT WATER QUALITY LINEAR MIXED MODELS ALGORITHMS |
topic |
REMOTE SENSING RESERVOIR LANDSAT WATER QUALITY LINEAR MIXED MODELS ALGORITHMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The application of remote sensing technology to water quality monitoring has special significance for lake management at regional scales. Many studies have proposed algorithms between Landsat data and in-situ water quality parameters using classical regression models. The novelty of this paper is that we developed algorithms to determine log-transformed chlorophyll-a concentration (Chl-a) and Secchi disk transparency (SDT) in Río Tercero reservoir using Landsat TM and ETM+ imagery, ancillary environmental factors and linear mixed models (LMM), obtaining an increase in the accuracy of the estimates. The validation results showed that LMM with spatial correlation structure that take into account water surface temperature (WST) and rainfall were the most suitable method for estimating these parameters. WST derived from the Landsat thermal band was also validated. The algorithms were used to generate quantitative maps providing spatially and temporally rich information on patterns of water quality throughout the reservoir. Water quality features related to the hydrogeomorphology of the reservoir, typical seasonality and influx from the cooling system of a local nuclear reactor were identified in the time series maps. Fil: Bonansea, Matias. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Cátedra de Ecología; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente.; Argentina Fil: Rodriguez, Claudia. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Cátedra de Ecología; Argentina Fil: Pinotti, Lucio Pedro. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente.; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina Fil: Ferrero, Susana Beatriz. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina |
description |
The application of remote sensing technology to water quality monitoring has special significance for lake management at regional scales. Many studies have proposed algorithms between Landsat data and in-situ water quality parameters using classical regression models. The novelty of this paper is that we developed algorithms to determine log-transformed chlorophyll-a concentration (Chl-a) and Secchi disk transparency (SDT) in Río Tercero reservoir using Landsat TM and ETM+ imagery, ancillary environmental factors and linear mixed models (LMM), obtaining an increase in the accuracy of the estimates. The validation results showed that LMM with spatial correlation structure that take into account water surface temperature (WST) and rainfall were the most suitable method for estimating these parameters. WST derived from the Landsat thermal band was also validated. The algorithms were used to generate quantitative maps providing spatially and temporally rich information on patterns of water quality throughout the reservoir. Water quality features related to the hydrogeomorphology of the reservoir, typical seasonality and influx from the cooling system of a local nuclear reactor were identified in the time series maps. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/102510 Bonansea, Matias; Rodriguez, Claudia; Pinotti, Lucio Pedro; Ferrero, Susana Beatriz; Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina); Elsevier Science Inc; Remote Sensing of Environment; 158; 1; 1-3-2015; 28-41 0034-4257 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/102510 |
identifier_str_mv |
Bonansea, Matias; Rodriguez, Claudia; Pinotti, Lucio Pedro; Ferrero, Susana Beatriz; Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina); Elsevier Science Inc; Remote Sensing of Environment; 158; 1; 1-3-2015; 28-41 0034-4257 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0034425714004544 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rse.2014.10.032 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613168058335232 |
score |
13.069144 |