Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe

Autores
Kuffer, Martin; Zwick, Analía Elizabeth; Alvarez, Gonzalo Agustin
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Reliable processing of quantum information is a milestone to achieve for the deployment of quantum technologies. Uncontrolled, out-of-equilibrium sources of decoherence need to be characterized in detail for designing the control of quantum devices to mitigate the loss of quantum information. However, quantum sensing of such environments is still a challenge due to their nonstationary nature that in general can generate complex high-order correlations. We introduce a path integral framework to characterize nonstationary environmental fluctuations by a quantum probe. We find the solution for the decoherence decay of nonstationary, generalized Gaussian processes that induce pure dephasing. This dephasing when expressed in a suitable basis, based on the nonstationary noise eigenmodes, is defined by the overlap of a generalized noise spectral density and a filter function that depends on the control fields. This result thus extends the validity of the similar general expression for the dephasing of open quantum systems coupled to stationary noise processes to out-of-equilibrium environments. We show physical insights for a broad subclass of nonstationary noise processes that are local in time, in the sense that the noise correlation functions contain memory based on constraints of the derivatives of the fluctuating noise paths. Spectral and non-Markovian properties are discussed together with implementations of the framework to treat paradigmatic environments that are out of equilibrium, e.g., due to a quench and a pulsed noise. We show that our results provide tools for probing the spectral and time-correlation properties, and for mitigating decoherence effects of out-of-equilibrium - nonstationary - environments.
Fil: Kuffer, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Alvarez, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Materia
Informacion Cuantica
tecnologias cuanticas
sensores cuanticos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/208855

id CONICETDig_0173f8a29ac92c1505de492cb7b360dd
oai_identifier_str oai:ri.conicet.gov.ar:11336/208855
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum ProbeKuffer, MartinZwick, Analía ElizabethAlvarez, Gonzalo AgustinInformacion Cuanticatecnologias cuanticassensores cuanticoshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Reliable processing of quantum information is a milestone to achieve for the deployment of quantum technologies. Uncontrolled, out-of-equilibrium sources of decoherence need to be characterized in detail for designing the control of quantum devices to mitigate the loss of quantum information. However, quantum sensing of such environments is still a challenge due to their nonstationary nature that in general can generate complex high-order correlations. We introduce a path integral framework to characterize nonstationary environmental fluctuations by a quantum probe. We find the solution for the decoherence decay of nonstationary, generalized Gaussian processes that induce pure dephasing. This dephasing when expressed in a suitable basis, based on the nonstationary noise eigenmodes, is defined by the overlap of a generalized noise spectral density and a filter function that depends on the control fields. This result thus extends the validity of the similar general expression for the dephasing of open quantum systems coupled to stationary noise processes to out-of-equilibrium environments. We show physical insights for a broad subclass of nonstationary noise processes that are local in time, in the sense that the noise correlation functions contain memory based on constraints of the derivatives of the fluctuating noise paths. Spectral and non-Markovian properties are discussed together with implementations of the framework to treat paradigmatic environments that are out of equilibrium, e.g., due to a quench and a pulsed noise. We show that our results provide tools for probing the spectral and time-correlation properties, and for mitigating decoherence effects of out-of-equilibrium - nonstationary - environments.Fil: Kuffer, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Alvarez, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaAmerican Physical Society2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/208855Kuffer, Martin; Zwick, Analía Elizabeth; Alvarez, Gonzalo Agustin; Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe; American Physical Society; PRX Quantum; 3; 2; 4-2022; 1-272691-3399CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PRXQuantum.3.020321info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:47Zoai:ri.conicet.gov.ar:11336/208855instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:47.56CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe
title Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe
spellingShingle Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe
Kuffer, Martin
Informacion Cuantica
tecnologias cuanticas
sensores cuanticos
title_short Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe
title_full Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe
title_fullStr Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe
title_full_unstemmed Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe
title_sort Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe
dc.creator.none.fl_str_mv Kuffer, Martin
Zwick, Analía Elizabeth
Alvarez, Gonzalo Agustin
author Kuffer, Martin
author_facet Kuffer, Martin
Zwick, Analía Elizabeth
Alvarez, Gonzalo Agustin
author_role author
author2 Zwick, Analía Elizabeth
Alvarez, Gonzalo Agustin
author2_role author
author
dc.subject.none.fl_str_mv Informacion Cuantica
tecnologias cuanticas
sensores cuanticos
topic Informacion Cuantica
tecnologias cuanticas
sensores cuanticos
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Reliable processing of quantum information is a milestone to achieve for the deployment of quantum technologies. Uncontrolled, out-of-equilibrium sources of decoherence need to be characterized in detail for designing the control of quantum devices to mitigate the loss of quantum information. However, quantum sensing of such environments is still a challenge due to their nonstationary nature that in general can generate complex high-order correlations. We introduce a path integral framework to characterize nonstationary environmental fluctuations by a quantum probe. We find the solution for the decoherence decay of nonstationary, generalized Gaussian processes that induce pure dephasing. This dephasing when expressed in a suitable basis, based on the nonstationary noise eigenmodes, is defined by the overlap of a generalized noise spectral density and a filter function that depends on the control fields. This result thus extends the validity of the similar general expression for the dephasing of open quantum systems coupled to stationary noise processes to out-of-equilibrium environments. We show physical insights for a broad subclass of nonstationary noise processes that are local in time, in the sense that the noise correlation functions contain memory based on constraints of the derivatives of the fluctuating noise paths. Spectral and non-Markovian properties are discussed together with implementations of the framework to treat paradigmatic environments that are out of equilibrium, e.g., due to a quench and a pulsed noise. We show that our results provide tools for probing the spectral and time-correlation properties, and for mitigating decoherence effects of out-of-equilibrium - nonstationary - environments.
Fil: Kuffer, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Alvarez, Gonzalo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
description Reliable processing of quantum information is a milestone to achieve for the deployment of quantum technologies. Uncontrolled, out-of-equilibrium sources of decoherence need to be characterized in detail for designing the control of quantum devices to mitigate the loss of quantum information. However, quantum sensing of such environments is still a challenge due to their nonstationary nature that in general can generate complex high-order correlations. We introduce a path integral framework to characterize nonstationary environmental fluctuations by a quantum probe. We find the solution for the decoherence decay of nonstationary, generalized Gaussian processes that induce pure dephasing. This dephasing when expressed in a suitable basis, based on the nonstationary noise eigenmodes, is defined by the overlap of a generalized noise spectral density and a filter function that depends on the control fields. This result thus extends the validity of the similar general expression for the dephasing of open quantum systems coupled to stationary noise processes to out-of-equilibrium environments. We show physical insights for a broad subclass of nonstationary noise processes that are local in time, in the sense that the noise correlation functions contain memory based on constraints of the derivatives of the fluctuating noise paths. Spectral and non-Markovian properties are discussed together with implementations of the framework to treat paradigmatic environments that are out of equilibrium, e.g., due to a quench and a pulsed noise. We show that our results provide tools for probing the spectral and time-correlation properties, and for mitigating decoherence effects of out-of-equilibrium - nonstationary - environments.
publishDate 2022
dc.date.none.fl_str_mv 2022-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/208855
Kuffer, Martin; Zwick, Analía Elizabeth; Alvarez, Gonzalo Agustin; Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe; American Physical Society; PRX Quantum; 3; 2; 4-2022; 1-27
2691-3399
CONICET Digital
CONICET
url http://hdl.handle.net/11336/208855
identifier_str_mv Kuffer, Martin; Zwick, Analía Elizabeth; Alvarez, Gonzalo Agustin; Path Integral Framework for Characterizing and Controlling Decoherence Induced by Nonstationary Environments on a Quantum Probe; American Physical Society; PRX Quantum; 3; 2; 4-2022; 1-27
2691-3399
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PRXQuantum.3.020321
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614191735898112
score 13.070432