Nonequilibrium electronic transport in a one-dimensional Mott insulator

Autores
Heidrich Meisner, F.; González, Ignacio; Al Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, Marcelo Javier; Dagotto, Elbio
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy. © 2010 The American Physical Society.
Fil: Heidrich Meisner, F.. Ludwig Maximilians Universitat; Alemania
Fil: González, Ignacio. Centro de Supercomputacion de Galicia;
Fil: Al Hassanieh, K. A.. Los Alamos National Laboratory; Estados Unidos
Fil: Feiguin, A. E.. University Of Wyoming; Estados Unidos
Fil: Rozenberg, Marcelo Javier. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Dagotto, Elbio. University of Tennessee; Estados Unidos
Materia
Strongly Correlated Electrons
Out of Equilibrium Dynamics
Mott Transition
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57168

id CONICETDig_d1262a91aac3320d979aefd8c808298a
oai_identifier_str oai:ri.conicet.gov.ar:11336/57168
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonequilibrium electronic transport in a one-dimensional Mott insulatorHeidrich Meisner, F.González, IgnacioAl Hassanieh, K. A.Feiguin, A. E.Rozenberg, Marcelo JavierDagotto, ElbioStrongly Correlated ElectronsOut of Equilibrium DynamicsMott Transitionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy. © 2010 The American Physical Society.Fil: Heidrich Meisner, F.. Ludwig Maximilians Universitat; AlemaniaFil: González, Ignacio. Centro de Supercomputacion de Galicia;Fil: Al Hassanieh, K. A.. Los Alamos National Laboratory; Estados UnidosFil: Feiguin, A. E.. University Of Wyoming; Estados UnidosFil: Rozenberg, Marcelo Javier. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Dagotto, Elbio. University of Tennessee; Estados UnidosAmerican Physical Society2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57168Heidrich Meisner, F.; González, Ignacio; Al Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, Marcelo Javier; et al.; Nonequilibrium electronic transport in a one-dimensional Mott insulator; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 82; 20; 10-2010; 205110-2051201098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.82.205110info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.205110info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:28Zoai:ri.conicet.gov.ar:11336/57168instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:28.251CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonequilibrium electronic transport in a one-dimensional Mott insulator
title Nonequilibrium electronic transport in a one-dimensional Mott insulator
spellingShingle Nonequilibrium electronic transport in a one-dimensional Mott insulator
Heidrich Meisner, F.
Strongly Correlated Electrons
Out of Equilibrium Dynamics
Mott Transition
title_short Nonequilibrium electronic transport in a one-dimensional Mott insulator
title_full Nonequilibrium electronic transport in a one-dimensional Mott insulator
title_fullStr Nonequilibrium electronic transport in a one-dimensional Mott insulator
title_full_unstemmed Nonequilibrium electronic transport in a one-dimensional Mott insulator
title_sort Nonequilibrium electronic transport in a one-dimensional Mott insulator
dc.creator.none.fl_str_mv Heidrich Meisner, F.
González, Ignacio
Al Hassanieh, K. A.
Feiguin, A. E.
Rozenberg, Marcelo Javier
Dagotto, Elbio
author Heidrich Meisner, F.
author_facet Heidrich Meisner, F.
González, Ignacio
Al Hassanieh, K. A.
Feiguin, A. E.
Rozenberg, Marcelo Javier
Dagotto, Elbio
author_role author
author2 González, Ignacio
Al Hassanieh, K. A.
Feiguin, A. E.
Rozenberg, Marcelo Javier
Dagotto, Elbio
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Strongly Correlated Electrons
Out of Equilibrium Dynamics
Mott Transition
topic Strongly Correlated Electrons
Out of Equilibrium Dynamics
Mott Transition
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy. © 2010 The American Physical Society.
Fil: Heidrich Meisner, F.. Ludwig Maximilians Universitat; Alemania
Fil: González, Ignacio. Centro de Supercomputacion de Galicia;
Fil: Al Hassanieh, K. A.. Los Alamos National Laboratory; Estados Unidos
Fil: Feiguin, A. E.. University Of Wyoming; Estados Unidos
Fil: Rozenberg, Marcelo Javier. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Dagotto, Elbio. University of Tennessee; Estados Unidos
description We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy. © 2010 The American Physical Society.
publishDate 2010
dc.date.none.fl_str_mv 2010-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57168
Heidrich Meisner, F.; González, Ignacio; Al Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, Marcelo Javier; et al.; Nonequilibrium electronic transport in a one-dimensional Mott insulator; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 82; 20; 10-2010; 205110-205120
1098-0121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57168
identifier_str_mv Heidrich Meisner, F.; González, Ignacio; Al Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, Marcelo Javier; et al.; Nonequilibrium electronic transport in a one-dimensional Mott insulator; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 82; 20; 10-2010; 205110-205120
1098-0121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.82.205110
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.205110
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083313190567936
score 13.22299