Nonequilibrium electronic transport in a one-dimensional Mott insulator
- Autores
- Heidrich Meisner, F.; González, Ignacio; Al Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, Marcelo Javier; Dagotto, Elbio
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy. © 2010 The American Physical Society.
Fil: Heidrich Meisner, F.. Ludwig Maximilians Universitat; Alemania
Fil: González, Ignacio. Centro de Supercomputacion de Galicia;
Fil: Al Hassanieh, K. A.. Los Alamos National Laboratory; Estados Unidos
Fil: Feiguin, A. E.. University Of Wyoming; Estados Unidos
Fil: Rozenberg, Marcelo Javier. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Dagotto, Elbio. University of Tennessee; Estados Unidos - Materia
-
Strongly Correlated Electrons
Out of Equilibrium Dynamics
Mott Transition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/57168
Ver los metadatos del registro completo
| id |
CONICETDig_d1262a91aac3320d979aefd8c808298a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/57168 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Nonequilibrium electronic transport in a one-dimensional Mott insulatorHeidrich Meisner, F.González, IgnacioAl Hassanieh, K. A.Feiguin, A. E.Rozenberg, Marcelo JavierDagotto, ElbioStrongly Correlated ElectronsOut of Equilibrium DynamicsMott Transitionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy. © 2010 The American Physical Society.Fil: Heidrich Meisner, F.. Ludwig Maximilians Universitat; AlemaniaFil: González, Ignacio. Centro de Supercomputacion de Galicia;Fil: Al Hassanieh, K. A.. Los Alamos National Laboratory; Estados UnidosFil: Feiguin, A. E.. University Of Wyoming; Estados UnidosFil: Rozenberg, Marcelo Javier. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Dagotto, Elbio. University of Tennessee; Estados UnidosAmerican Physical Society2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57168Heidrich Meisner, F.; González, Ignacio; Al Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, Marcelo Javier; et al.; Nonequilibrium electronic transport in a one-dimensional Mott insulator; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 82; 20; 10-2010; 205110-2051201098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.82.205110info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.205110info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:23:31Zoai:ri.conicet.gov.ar:11336/57168instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:23:31.342CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Nonequilibrium electronic transport in a one-dimensional Mott insulator |
| title |
Nonequilibrium electronic transport in a one-dimensional Mott insulator |
| spellingShingle |
Nonequilibrium electronic transport in a one-dimensional Mott insulator Heidrich Meisner, F. Strongly Correlated Electrons Out of Equilibrium Dynamics Mott Transition |
| title_short |
Nonequilibrium electronic transport in a one-dimensional Mott insulator |
| title_full |
Nonequilibrium electronic transport in a one-dimensional Mott insulator |
| title_fullStr |
Nonequilibrium electronic transport in a one-dimensional Mott insulator |
| title_full_unstemmed |
Nonequilibrium electronic transport in a one-dimensional Mott insulator |
| title_sort |
Nonequilibrium electronic transport in a one-dimensional Mott insulator |
| dc.creator.none.fl_str_mv |
Heidrich Meisner, F. González, Ignacio Al Hassanieh, K. A. Feiguin, A. E. Rozenberg, Marcelo Javier Dagotto, Elbio |
| author |
Heidrich Meisner, F. |
| author_facet |
Heidrich Meisner, F. González, Ignacio Al Hassanieh, K. A. Feiguin, A. E. Rozenberg, Marcelo Javier Dagotto, Elbio |
| author_role |
author |
| author2 |
González, Ignacio Al Hassanieh, K. A. Feiguin, A. E. Rozenberg, Marcelo Javier Dagotto, Elbio |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Strongly Correlated Electrons Out of Equilibrium Dynamics Mott Transition |
| topic |
Strongly Correlated Electrons Out of Equilibrium Dynamics Mott Transition |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy. © 2010 The American Physical Society. Fil: Heidrich Meisner, F.. Ludwig Maximilians Universitat; Alemania Fil: González, Ignacio. Centro de Supercomputacion de Galicia; Fil: Al Hassanieh, K. A.. Los Alamos National Laboratory; Estados Unidos Fil: Feiguin, A. E.. University Of Wyoming; Estados Unidos Fil: Rozenberg, Marcelo Javier. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Dagotto, Elbio. University of Tennessee; Estados Unidos |
| description |
We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy. © 2010 The American Physical Society. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/57168 Heidrich Meisner, F.; González, Ignacio; Al Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, Marcelo Javier; et al.; Nonequilibrium electronic transport in a one-dimensional Mott insulator; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 82; 20; 10-2010; 205110-205120 1098-0121 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/57168 |
| identifier_str_mv |
Heidrich Meisner, F.; González, Ignacio; Al Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, Marcelo Javier; et al.; Nonequilibrium electronic transport in a one-dimensional Mott insulator; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 82; 20; 10-2010; 205110-205120 1098-0121 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.82.205110 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.205110 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977860377083904 |
| score |
13.084122 |