Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning
- Autores
- Morales Garcia, John Armando; Orduña, Eduardo Agustín; Rehtanz, C.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One of most important elements of Electric Power Systems (EPS) is the transmission line (TL), which is permanently under adverse conditions especially lightning strokes. At the moment, those phenomena have been the root cause of short circuits and the most important cause of mal-operation of transmission line protection relays. Thus, this paper develops the classification of lightning transient signals with and without fault. Multi-resolution analysis (MRA) is used to analyze those signals considering five mother wavelets and different decomposition levels of three phase voltages. In this manner, Spectral Energy and Machine Learning as Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine are employed to classify those signals. On the other hand, the developed work in this paper analyzes most important parameters of lightning strokes, which are essentials in producing conditions with and without fault. Results show that the methodology presents an acceptable performance. © 2013 Elsevier Ltd. All rights reserved.
Fil: Morales Garcia, John Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Orduña, Eduardo Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Rehtanz, C.. Universität Dortmund; Alemania - Materia
-
BACK-FLASHOVER
DECOMPOSITION LEVEL
FLASHOVER
LIGHTNING STROKE
MACHINE LEARNING
MULTI-RESOLUTION ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124808
Ver los metadatos del registro completo
id |
CONICETDig_0067db7e5e19cde29b67d623a74eee0a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124808 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classification of lightning stroke on transmission line using multi-resolution analysis and machine learningMorales Garcia, John ArmandoOrduña, Eduardo AgustínRehtanz, C.BACK-FLASHOVERDECOMPOSITION LEVELFLASHOVERLIGHTNING STROKEMACHINE LEARNINGMULTI-RESOLUTION ANALYSIShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2One of most important elements of Electric Power Systems (EPS) is the transmission line (TL), which is permanently under adverse conditions especially lightning strokes. At the moment, those phenomena have been the root cause of short circuits and the most important cause of mal-operation of transmission line protection relays. Thus, this paper develops the classification of lightning transient signals with and without fault. Multi-resolution analysis (MRA) is used to analyze those signals considering five mother wavelets and different decomposition levels of three phase voltages. In this manner, Spectral Energy and Machine Learning as Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine are employed to classify those signals. On the other hand, the developed work in this paper analyzes most important parameters of lightning strokes, which are essentials in producing conditions with and without fault. Results show that the methodology presents an acceptable performance. © 2013 Elsevier Ltd. All rights reserved.Fil: Morales Garcia, John Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Orduña, Eduardo Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Rehtanz, C.. Universität Dortmund; AlemaniaElsevier2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124808Morales Garcia, John Armando; Orduña, Eduardo Agustín; Rehtanz, C.; Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning; Elsevier; International Journal of Electrical Power & Energy Systems; 58; 6-2014; 19-310142-0615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijepes.2013.12.017info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0142061513005425info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:13Zoai:ri.conicet.gov.ar:11336/124808instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:13.923CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning |
title |
Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning |
spellingShingle |
Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning Morales Garcia, John Armando BACK-FLASHOVER DECOMPOSITION LEVEL FLASHOVER LIGHTNING STROKE MACHINE LEARNING MULTI-RESOLUTION ANALYSIS |
title_short |
Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning |
title_full |
Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning |
title_fullStr |
Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning |
title_full_unstemmed |
Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning |
title_sort |
Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning |
dc.creator.none.fl_str_mv |
Morales Garcia, John Armando Orduña, Eduardo Agustín Rehtanz, C. |
author |
Morales Garcia, John Armando |
author_facet |
Morales Garcia, John Armando Orduña, Eduardo Agustín Rehtanz, C. |
author_role |
author |
author2 |
Orduña, Eduardo Agustín Rehtanz, C. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BACK-FLASHOVER DECOMPOSITION LEVEL FLASHOVER LIGHTNING STROKE MACHINE LEARNING MULTI-RESOLUTION ANALYSIS |
topic |
BACK-FLASHOVER DECOMPOSITION LEVEL FLASHOVER LIGHTNING STROKE MACHINE LEARNING MULTI-RESOLUTION ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
One of most important elements of Electric Power Systems (EPS) is the transmission line (TL), which is permanently under adverse conditions especially lightning strokes. At the moment, those phenomena have been the root cause of short circuits and the most important cause of mal-operation of transmission line protection relays. Thus, this paper develops the classification of lightning transient signals with and without fault. Multi-resolution analysis (MRA) is used to analyze those signals considering five mother wavelets and different decomposition levels of three phase voltages. In this manner, Spectral Energy and Machine Learning as Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine are employed to classify those signals. On the other hand, the developed work in this paper analyzes most important parameters of lightning strokes, which are essentials in producing conditions with and without fault. Results show that the methodology presents an acceptable performance. © 2013 Elsevier Ltd. All rights reserved. Fil: Morales Garcia, John Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Orduña, Eduardo Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Rehtanz, C.. Universität Dortmund; Alemania |
description |
One of most important elements of Electric Power Systems (EPS) is the transmission line (TL), which is permanently under adverse conditions especially lightning strokes. At the moment, those phenomena have been the root cause of short circuits and the most important cause of mal-operation of transmission line protection relays. Thus, this paper develops the classification of lightning transient signals with and without fault. Multi-resolution analysis (MRA) is used to analyze those signals considering five mother wavelets and different decomposition levels of three phase voltages. In this manner, Spectral Energy and Machine Learning as Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine are employed to classify those signals. On the other hand, the developed work in this paper analyzes most important parameters of lightning strokes, which are essentials in producing conditions with and without fault. Results show that the methodology presents an acceptable performance. © 2013 Elsevier Ltd. All rights reserved. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124808 Morales Garcia, John Armando; Orduña, Eduardo Agustín; Rehtanz, C.; Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning; Elsevier; International Journal of Electrical Power & Energy Systems; 58; 6-2014; 19-31 0142-0615 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/124808 |
identifier_str_mv |
Morales Garcia, John Armando; Orduña, Eduardo Agustín; Rehtanz, C.; Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning; Elsevier; International Journal of Electrical Power & Energy Systems; 58; 6-2014; 19-31 0142-0615 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijepes.2013.12.017 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0142061513005425 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614009399017472 |
score |
13.070432 |