A Quantum-inspired Version of the Classification Problem
- Autores
- Sergioli, Giuseppe; Bosyk, Gustavo Martin; Santucci, Enrica; Giuntini, Roberto
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We address the problem of binary classification by using a quantum version of the Nearest Mean Classifier (NMC). Our proposal is indeed an advanced version of previous one (see Sergioli et al. 2017 that i) is able to be naturally generalized to arbitrary number of features and ii) exhibits better performances with respect to the classical NMC for several datasets. Further, we show that the quantum version of NMC is not invariant under rescaling. This allows us to introduce a free parameter, i.e. the rescaling factor, that could be useful to get a further improvement of the classification performance.
Fil: Sergioli, Giuseppe. Università degli studi di Cagliari; Italia
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Santucci, Enrica. Università degli studi di Cagliari; Italia
Fil: Giuntini, Roberto. Università degli studi di Cagliari; Italia - Materia
-
Density Operators
Nearest Mean Classifier
Rescaling Invariance - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50169
Ver los metadatos del registro completo
id |
CONICETDig_002fb4f44724c51acbaad392e52baac0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50169 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Quantum-inspired Version of the Classification ProblemSergioli, GiuseppeBosyk, Gustavo MartinSantucci, EnricaGiuntini, RobertoDensity OperatorsNearest Mean ClassifierRescaling Invariancehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We address the problem of binary classification by using a quantum version of the Nearest Mean Classifier (NMC). Our proposal is indeed an advanced version of previous one (see Sergioli et al. 2017 that i) is able to be naturally generalized to arbitrary number of features and ii) exhibits better performances with respect to the classical NMC for several datasets. Further, we show that the quantum version of NMC is not invariant under rescaling. This allows us to introduce a free parameter, i.e. the rescaling factor, that could be useful to get a further improvement of the classification performance.Fil: Sergioli, Giuseppe. Università degli studi di Cagliari; ItaliaFil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Santucci, Enrica. Università degli studi di Cagliari; ItaliaFil: Giuntini, Roberto. Università degli studi di Cagliari; ItaliaSpringer/Plenum Publishers2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50169Sergioli, Giuseppe; Bosyk, Gustavo Martin; Santucci, Enrica; Giuntini, Roberto; A Quantum-inspired Version of the Classification Problem; Springer/Plenum Publishers; International Journal of Theoretical Physics; 56; 12; 12-2017; 3880-38880020-7748CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10773-017-3371-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10773-017-3371-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:42Zoai:ri.conicet.gov.ar:11336/50169instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:42.949CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Quantum-inspired Version of the Classification Problem |
title |
A Quantum-inspired Version of the Classification Problem |
spellingShingle |
A Quantum-inspired Version of the Classification Problem Sergioli, Giuseppe Density Operators Nearest Mean Classifier Rescaling Invariance |
title_short |
A Quantum-inspired Version of the Classification Problem |
title_full |
A Quantum-inspired Version of the Classification Problem |
title_fullStr |
A Quantum-inspired Version of the Classification Problem |
title_full_unstemmed |
A Quantum-inspired Version of the Classification Problem |
title_sort |
A Quantum-inspired Version of the Classification Problem |
dc.creator.none.fl_str_mv |
Sergioli, Giuseppe Bosyk, Gustavo Martin Santucci, Enrica Giuntini, Roberto |
author |
Sergioli, Giuseppe |
author_facet |
Sergioli, Giuseppe Bosyk, Gustavo Martin Santucci, Enrica Giuntini, Roberto |
author_role |
author |
author2 |
Bosyk, Gustavo Martin Santucci, Enrica Giuntini, Roberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Density Operators Nearest Mean Classifier Rescaling Invariance |
topic |
Density Operators Nearest Mean Classifier Rescaling Invariance |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We address the problem of binary classification by using a quantum version of the Nearest Mean Classifier (NMC). Our proposal is indeed an advanced version of previous one (see Sergioli et al. 2017 that i) is able to be naturally generalized to arbitrary number of features and ii) exhibits better performances with respect to the classical NMC for several datasets. Further, we show that the quantum version of NMC is not invariant under rescaling. This allows us to introduce a free parameter, i.e. the rescaling factor, that could be useful to get a further improvement of the classification performance. Fil: Sergioli, Giuseppe. Università degli studi di Cagliari; Italia Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina Fil: Santucci, Enrica. Università degli studi di Cagliari; Italia Fil: Giuntini, Roberto. Università degli studi di Cagliari; Italia |
description |
We address the problem of binary classification by using a quantum version of the Nearest Mean Classifier (NMC). Our proposal is indeed an advanced version of previous one (see Sergioli et al. 2017 that i) is able to be naturally generalized to arbitrary number of features and ii) exhibits better performances with respect to the classical NMC for several datasets. Further, we show that the quantum version of NMC is not invariant under rescaling. This allows us to introduce a free parameter, i.e. the rescaling factor, that could be useful to get a further improvement of the classification performance. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50169 Sergioli, Giuseppe; Bosyk, Gustavo Martin; Santucci, Enrica; Giuntini, Roberto; A Quantum-inspired Version of the Classification Problem; Springer/Plenum Publishers; International Journal of Theoretical Physics; 56; 12; 12-2017; 3880-3888 0020-7748 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/50169 |
identifier_str_mv |
Sergioli, Giuseppe; Bosyk, Gustavo Martin; Santucci, Enrica; Giuntini, Roberto; A Quantum-inspired Version of the Classification Problem; Springer/Plenum Publishers; International Journal of Theoretical Physics; 56; 12; 12-2017; 3880-3888 0020-7748 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10773-017-3371-1 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10773-017-3371-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer/Plenum Publishers |
publisher.none.fl_str_mv |
Springer/Plenum Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613288596340736 |
score |
13.070432 |