Tendencies in multi-agent systems: a systematic literature review
- Autores
- Falco, Mariana; Robiolo, Gabriela
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The application of Artificial Intelligence mechanisms allows the development of systems capable to solve very complex engineering problems. Multi-agent systems (MAS) are one paradigm that allows an alternative way to design distributed control systems. While research in this area grew exponentially before 2009, there is a need to understand the status quo of the field from 2009 to June 2017. An extension of the results of a SLR related to Multi-Agent Systems, its applications and research gaps, following Kitchenham and Wholin guidelines are presented in this paper. From the analysis of 279 papers (out of 3522 candidates), our findings suggest that: a) there were 20 gaps related to agent-oriented methodologies; coordination, cooperation and negotiation; modelling, developing, testing and debugging; b) 24 gaps related to specific domains (recycling, dynamic evacuation, hazard management, health-care, industry, logistics and manufacturing, machine learning, ambient assisted living); and 14 gaps related to specific areas within MAS (A-Teams, dynamic MAS and mobile agents, ABMS, evolutionary MAS, and self-organizing MAS). These gaps specify lines of research where the MAS community must work to achieve the unification of the agent-oriented paradigm; as well as strengthen ties with the industry.
- Materia
-
Ingeniería de Sistemas y Comunicaciones
Systematic Literature Review
Multi-Agent Systems
MAS Research Gaps
AOSE components - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/12014
Ver los metadatos del registro completo
id |
CICBA_dac7e313406c00146a7b6249c9186f30 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/12014 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Tendencies in multi-agent systems: a systematic literature reviewFalco, MarianaRobiolo, GabrielaIngeniería de Sistemas y ComunicacionesSystematic Literature ReviewMulti-Agent SystemsMAS Research GapsAOSE componentsThe application of Artificial Intelligence mechanisms allows the development of systems capable to solve very complex engineering problems. Multi-agent systems (MAS) are one paradigm that allows an alternative way to design distributed control systems. While research in this area grew exponentially before 2009, there is a need to understand the status quo of the field from 2009 to June 2017. An extension of the results of a SLR related to Multi-Agent Systems, its applications and research gaps, following Kitchenham and Wholin guidelines are presented in this paper. From the analysis of 279 papers (out of 3522 candidates), our findings suggest that: a) there were 20 gaps related to agent-oriented methodologies; coordination, cooperation and negotiation; modelling, developing, testing and debugging; b) 24 gaps related to specific domains (recycling, dynamic evacuation, hazard management, health-care, industry, logistics and manufacturing, machine learning, ambient assisted living); and 14 gaps related to specific areas within MAS (A-Teams, dynamic MAS and mobile agents, ABMS, evolutionary MAS, and self-organizing MAS). These gaps specify lines of research where the MAS community must work to achieve the unification of the agent-oriented paradigm; as well as strengthen ties with the industry.2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/12014enginfo:eu-repo/semantics/altIdentifier/doi/10.19153/cleiej.23.1.1info:eu-repo/semantics/altIdentifier/issn/0717-5000info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:39:49Zoai:digital.cic.gba.gob.ar:11746/12014Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:39:50.063CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Tendencies in multi-agent systems: a systematic literature review |
title |
Tendencies in multi-agent systems: a systematic literature review |
spellingShingle |
Tendencies in multi-agent systems: a systematic literature review Falco, Mariana Ingeniería de Sistemas y Comunicaciones Systematic Literature Review Multi-Agent Systems MAS Research Gaps AOSE components |
title_short |
Tendencies in multi-agent systems: a systematic literature review |
title_full |
Tendencies in multi-agent systems: a systematic literature review |
title_fullStr |
Tendencies in multi-agent systems: a systematic literature review |
title_full_unstemmed |
Tendencies in multi-agent systems: a systematic literature review |
title_sort |
Tendencies in multi-agent systems: a systematic literature review |
dc.creator.none.fl_str_mv |
Falco, Mariana Robiolo, Gabriela |
author |
Falco, Mariana |
author_facet |
Falco, Mariana Robiolo, Gabriela |
author_role |
author |
author2 |
Robiolo, Gabriela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ingeniería de Sistemas y Comunicaciones Systematic Literature Review Multi-Agent Systems MAS Research Gaps AOSE components |
topic |
Ingeniería de Sistemas y Comunicaciones Systematic Literature Review Multi-Agent Systems MAS Research Gaps AOSE components |
dc.description.none.fl_txt_mv |
The application of Artificial Intelligence mechanisms allows the development of systems capable to solve very complex engineering problems. Multi-agent systems (MAS) are one paradigm that allows an alternative way to design distributed control systems. While research in this area grew exponentially before 2009, there is a need to understand the status quo of the field from 2009 to June 2017. An extension of the results of a SLR related to Multi-Agent Systems, its applications and research gaps, following Kitchenham and Wholin guidelines are presented in this paper. From the analysis of 279 papers (out of 3522 candidates), our findings suggest that: a) there were 20 gaps related to agent-oriented methodologies; coordination, cooperation and negotiation; modelling, developing, testing and debugging; b) 24 gaps related to specific domains (recycling, dynamic evacuation, hazard management, health-care, industry, logistics and manufacturing, machine learning, ambient assisted living); and 14 gaps related to specific areas within MAS (A-Teams, dynamic MAS and mobile agents, ABMS, evolutionary MAS, and self-organizing MAS). These gaps specify lines of research where the MAS community must work to achieve the unification of the agent-oriented paradigm; as well as strengthen ties with the industry. |
description |
The application of Artificial Intelligence mechanisms allows the development of systems capable to solve very complex engineering problems. Multi-agent systems (MAS) are one paradigm that allows an alternative way to design distributed control systems. While research in this area grew exponentially before 2009, there is a need to understand the status quo of the field from 2009 to June 2017. An extension of the results of a SLR related to Multi-Agent Systems, its applications and research gaps, following Kitchenham and Wholin guidelines are presented in this paper. From the analysis of 279 papers (out of 3522 candidates), our findings suggest that: a) there were 20 gaps related to agent-oriented methodologies; coordination, cooperation and negotiation; modelling, developing, testing and debugging; b) 24 gaps related to specific domains (recycling, dynamic evacuation, hazard management, health-care, industry, logistics and manufacturing, machine learning, ambient assisted living); and 14 gaps related to specific areas within MAS (A-Teams, dynamic MAS and mobile agents, ABMS, evolutionary MAS, and self-organizing MAS). These gaps specify lines of research where the MAS community must work to achieve the unification of the agent-oriented paradigm; as well as strengthen ties with the industry. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/12014 |
url |
https://digital.cic.gba.gob.ar/handle/11746/12014 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.19153/cleiej.23.1.1 info:eu-repo/semantics/altIdentifier/issn/0717-5000 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618579399409664 |
score |
13.070432 |