Archaeosomes made of Halorubrum tebenquichense total polar lipids: A new source of adjuvancy
- Autores
- González, Raúl O.; Higa, Leticia; Cutrullis, Romina A.; Bilen, Marcos; Roncaglia, Diana I.; Corral, Ricardo S.; Morilla, María José; Petray, Patricia B.; Romero, Eder L.; Morelli, Irma Susana
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión enviada
- Descripción
- Background: Archaeosomes (ARC), vesicles prepared from total polar lipids (TPL) extracted from selected genera and species from the Archaea domain, elicit both antibody and cell-mediated immunity to the entrapped antigen, as well as efficient cross priming of exogenous antigens, evoking a profound memory response. Screening for unexplored Archaea genus as new sources of adjuvancy, here we report the presence of two new Halorubrum tebenquichense strains isolated from grey crystals (GC) and black mood (BM) strata from a littoral Argentinean Patagonia salt flat. Cytotoxicity, intracellular transit and immune response induced by two subcutaneous (sc) administrations (days 0 and 21) with BSA entrapped in ARC made of TPL either form BM (ARC-BM) and from GC (ARC-GC) at 2% w/w (BSA/lipids), to C3H/HeN mice (25 μg BSA, 1.3 mg of archaeal lipids per mouse) and boosted on day 180 with 25 μg of bare BSA, were determined. Results: DNA G+C content (59.5 and 61.7% mol BM and GC, respectively), 16S rDNA sequentiation, DNA-DNA hybridization, arbitrarily primed fingerprint assay and biochemical data confirmed that BM and GC isolates were two non-previously described strains of H. tebenquichense. Both multilamellar ARC mean size were 564 ± 22 nm, with -50 mV zeta-potential, and were not cytotoxic on Vero cells up to 1 mg/ml and up to 0.1 mg/ml of lipids on J-774 macrophages (XTT method). ARC inner aqueous content remained inside the phago-lysosomal system of J-774 cells beyond the first incubation hour at 37°C, as revealed by pyranine loaded in ARC. Upon subcutaneous immunization of C3H/HeN mice, BSA entrapped in ARC-BM or ARC-GC elicited a strong and sustained primary antibody response, as well as improved specific humoral immunity after boosting with the bare antigen. Both IgG1 and IgG2a enhanced antibody titers could be demonstrated in long-term (200 days) recall suggesting induction of a mixed Th1/Th2 response. Conclusion: We herein report the finding of new H. tebenquichense non alkaliphilic strains in Argentinean Patagonia together with the adjuvant properties of ARC after sc administration in mice. Our results indicate that archaeosomes prepared with TPL from these two strains could be successfully used as vaccine delivery vehicles.
- Materia
-
Biotecnología de la Salud
enzyme activity
bacterial DNA
cytosine
guanosine
immunoglobulin
antibody
archaeosome
bacterial strain
cytotoxicity
drug delivery system
Halorubrum
immune response
phagolysosome
zeta potential - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/3701
Ver los metadatos del registro completo
id |
CICBA_82298fa9bae53ab9e14593b227d5c8bd |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/3701 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Archaeosomes made of Halorubrum tebenquichense total polar lipids: A new source of adjuvancyGonzález, Raúl O.Higa, LeticiaCutrullis, Romina A.Bilen, MarcosRoncaglia, Diana I.Corral, Ricardo S.Morilla, María JoséPetray, Patricia B.Romero, Eder L.Morelli, Irma SusanaBiotecnología de la Saludenzyme activitybacterial DNAcytosineguanosineimmunoglobulinantibodyarchaeosomebacterial straincytotoxicitydrug delivery systemHalorubrumimmune responsephagolysosomezeta potentialBackground: Archaeosomes (ARC), vesicles prepared from total polar lipids (TPL) extracted from selected genera and species from the Archaea domain, elicit both antibody and cell-mediated immunity to the entrapped antigen, as well as efficient cross priming of exogenous antigens, evoking a profound memory response. Screening for unexplored Archaea genus as new sources of adjuvancy, here we report the presence of two new Halorubrum tebenquichense strains isolated from grey crystals (GC) and black mood (BM) strata from a littoral Argentinean Patagonia salt flat. Cytotoxicity, intracellular transit and immune response induced by two subcutaneous (sc) administrations (days 0 and 21) with BSA entrapped in ARC made of TPL either form BM (ARC-BM) and from GC (ARC-GC) at 2% w/w (BSA/lipids), to C3H/HeN mice (25 μg BSA, 1.3 mg of archaeal lipids per mouse) and boosted on day 180 with 25 μg of bare BSA, were determined. Results: DNA G+C content (59.5 and 61.7% mol BM and GC, respectively), 16S rDNA sequentiation, DNA-DNA hybridization, arbitrarily primed fingerprint assay and biochemical data confirmed that BM and GC isolates were two non-previously described strains of H. tebenquichense. Both multilamellar ARC mean size were 564 ± 22 nm, with -50 mV zeta-potential, and were not cytotoxic on Vero cells up to 1 mg/ml and up to 0.1 mg/ml of lipids on J-774 macrophages (XTT method). ARC inner aqueous content remained inside the phago-lysosomal system of J-774 cells beyond the first incubation hour at 37°C, as revealed by pyranine loaded in ARC. Upon subcutaneous immunization of C3H/HeN mice, BSA entrapped in ARC-BM or ARC-GC elicited a strong and sustained primary antibody response, as well as improved specific humoral immunity after boosting with the bare antigen. Both IgG1 and IgG2a enhanced antibody titers could be demonstrated in long-term (200 days) recall suggesting induction of a mixed Th1/Th2 response. Conclusion: We herein report the finding of new H. tebenquichense non alkaliphilic strains in Argentinean Patagonia together with the adjuvant properties of ARC after sc administration in mice. Our results indicate that archaeosomes prepared with TPL from these two strains could be successfully used as vaccine delivery vehicles.2009-08-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/3701enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:14Zoai:digital.cic.gba.gob.ar:11746/3701Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:14.293CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Archaeosomes made of Halorubrum tebenquichense total polar lipids: A new source of adjuvancy |
title |
Archaeosomes made of Halorubrum tebenquichense total polar lipids: A new source of adjuvancy |
spellingShingle |
Archaeosomes made of Halorubrum tebenquichense total polar lipids: A new source of adjuvancy González, Raúl O. Biotecnología de la Salud enzyme activity bacterial DNA cytosine guanosine immunoglobulin antibody archaeosome bacterial strain cytotoxicity drug delivery system Halorubrum immune response phagolysosome zeta potential |
title_short |
Archaeosomes made of Halorubrum tebenquichense total polar lipids: A new source of adjuvancy |
title_full |
Archaeosomes made of Halorubrum tebenquichense total polar lipids: A new source of adjuvancy |
title_fullStr |
Archaeosomes made of Halorubrum tebenquichense total polar lipids: A new source of adjuvancy |
title_full_unstemmed |
Archaeosomes made of Halorubrum tebenquichense total polar lipids: A new source of adjuvancy |
title_sort |
Archaeosomes made of Halorubrum tebenquichense total polar lipids: A new source of adjuvancy |
dc.creator.none.fl_str_mv |
González, Raúl O. Higa, Leticia Cutrullis, Romina A. Bilen, Marcos Roncaglia, Diana I. Corral, Ricardo S. Morilla, María José Petray, Patricia B. Romero, Eder L. Morelli, Irma Susana |
author |
González, Raúl O. |
author_facet |
González, Raúl O. Higa, Leticia Cutrullis, Romina A. Bilen, Marcos Roncaglia, Diana I. Corral, Ricardo S. Morilla, María José Petray, Patricia B. Romero, Eder L. Morelli, Irma Susana |
author_role |
author |
author2 |
Higa, Leticia Cutrullis, Romina A. Bilen, Marcos Roncaglia, Diana I. Corral, Ricardo S. Morilla, María José Petray, Patricia B. Romero, Eder L. Morelli, Irma Susana |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
Biotecnología de la Salud enzyme activity bacterial DNA cytosine guanosine immunoglobulin antibody archaeosome bacterial strain cytotoxicity drug delivery system Halorubrum immune response phagolysosome zeta potential |
topic |
Biotecnología de la Salud enzyme activity bacterial DNA cytosine guanosine immunoglobulin antibody archaeosome bacterial strain cytotoxicity drug delivery system Halorubrum immune response phagolysosome zeta potential |
dc.description.none.fl_txt_mv |
Background: Archaeosomes (ARC), vesicles prepared from total polar lipids (TPL) extracted from selected genera and species from the Archaea domain, elicit both antibody and cell-mediated immunity to the entrapped antigen, as well as efficient cross priming of exogenous antigens, evoking a profound memory response. Screening for unexplored Archaea genus as new sources of adjuvancy, here we report the presence of two new Halorubrum tebenquichense strains isolated from grey crystals (GC) and black mood (BM) strata from a littoral Argentinean Patagonia salt flat. Cytotoxicity, intracellular transit and immune response induced by two subcutaneous (sc) administrations (days 0 and 21) with BSA entrapped in ARC made of TPL either form BM (ARC-BM) and from GC (ARC-GC) at 2% w/w (BSA/lipids), to C3H/HeN mice (25 μg BSA, 1.3 mg of archaeal lipids per mouse) and boosted on day 180 with 25 μg of bare BSA, were determined. Results: DNA G+C content (59.5 and 61.7% mol BM and GC, respectively), 16S rDNA sequentiation, DNA-DNA hybridization, arbitrarily primed fingerprint assay and biochemical data confirmed that BM and GC isolates were two non-previously described strains of H. tebenquichense. Both multilamellar ARC mean size were 564 ± 22 nm, with -50 mV zeta-potential, and were not cytotoxic on Vero cells up to 1 mg/ml and up to 0.1 mg/ml of lipids on J-774 macrophages (XTT method). ARC inner aqueous content remained inside the phago-lysosomal system of J-774 cells beyond the first incubation hour at 37°C, as revealed by pyranine loaded in ARC. Upon subcutaneous immunization of C3H/HeN mice, BSA entrapped in ARC-BM or ARC-GC elicited a strong and sustained primary antibody response, as well as improved specific humoral immunity after boosting with the bare antigen. Both IgG1 and IgG2a enhanced antibody titers could be demonstrated in long-term (200 days) recall suggesting induction of a mixed Th1/Th2 response. Conclusion: We herein report the finding of new H. tebenquichense non alkaliphilic strains in Argentinean Patagonia together with the adjuvant properties of ARC after sc administration in mice. Our results indicate that archaeosomes prepared with TPL from these two strains could be successfully used as vaccine delivery vehicles. |
description |
Background: Archaeosomes (ARC), vesicles prepared from total polar lipids (TPL) extracted from selected genera and species from the Archaea domain, elicit both antibody and cell-mediated immunity to the entrapped antigen, as well as efficient cross priming of exogenous antigens, evoking a profound memory response. Screening for unexplored Archaea genus as new sources of adjuvancy, here we report the presence of two new Halorubrum tebenquichense strains isolated from grey crystals (GC) and black mood (BM) strata from a littoral Argentinean Patagonia salt flat. Cytotoxicity, intracellular transit and immune response induced by two subcutaneous (sc) administrations (days 0 and 21) with BSA entrapped in ARC made of TPL either form BM (ARC-BM) and from GC (ARC-GC) at 2% w/w (BSA/lipids), to C3H/HeN mice (25 μg BSA, 1.3 mg of archaeal lipids per mouse) and boosted on day 180 with 25 μg of bare BSA, were determined. Results: DNA G+C content (59.5 and 61.7% mol BM and GC, respectively), 16S rDNA sequentiation, DNA-DNA hybridization, arbitrarily primed fingerprint assay and biochemical data confirmed that BM and GC isolates were two non-previously described strains of H. tebenquichense. Both multilamellar ARC mean size were 564 ± 22 nm, with -50 mV zeta-potential, and were not cytotoxic on Vero cells up to 1 mg/ml and up to 0.1 mg/ml of lipids on J-774 macrophages (XTT method). ARC inner aqueous content remained inside the phago-lysosomal system of J-774 cells beyond the first incubation hour at 37°C, as revealed by pyranine loaded in ARC. Upon subcutaneous immunization of C3H/HeN mice, BSA entrapped in ARC-BM or ARC-GC elicited a strong and sustained primary antibody response, as well as improved specific humoral immunity after boosting with the bare antigen. Both IgG1 and IgG2a enhanced antibody titers could be demonstrated in long-term (200 days) recall suggesting induction of a mixed Th1/Th2 response. Conclusion: We herein report the finding of new H. tebenquichense non alkaliphilic strains in Argentinean Patagonia together with the adjuvant properties of ARC after sc administration in mice. Our results indicate that archaeosomes prepared with TPL from these two strains could be successfully used as vaccine delivery vehicles. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-08-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
submittedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/3701 |
url |
https://digital.cic.gba.gob.ar/handle/11746/3701 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618610501222400 |
score |
13.070432 |