Object Recognition Models for Indoor Users’ Location

Autores
Borrelli, Franco Martín; Challiol, Cecilia
Año de publicación
2024
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Despite technological advances, precise positioning within buildings remains a considerable challenge. In this context, the present paper explores the research of user location in indoor spaces, embracing object recognition models executed directly on mobile devices. Our proposal is based on designing a generic solution architecture adaptable to any physical environment, enabling the definition and usage of relevant generic objects within the environment to determine the users' current location. This proposal uses Computer Vision, employing object recognition models for positioning. This kind of indoor positioning benefits from the growth of smartphones' functionalities and capabilities, thus avoiding the need to install additional infrastructures in physical spaces. A specific implementation of this architecture for React Native is presented, using the TensorFlow platform to support object recognition. This implementation allows demonstrating how this positioning works through concrete use cases. In addition, some lessons learned are discussed, which we hope will contribute to this topic.
Materia
Ciencias de la Computación e Información
Object Recognition Models
Indoor Location
User Location
Lightweight Networks
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/12347

id CICBA_8094690b094ef2720f34c7b64ff4a352
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/12347
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Object Recognition Models for Indoor Users’ LocationBorrelli, Franco MartínChalliol, CeciliaCiencias de la Computación e InformaciónObject Recognition ModelsIndoor LocationUser LocationLightweight NetworksDespite technological advances, precise positioning within buildings remains a considerable challenge. In this context, the present paper explores the research of user location in indoor spaces, embracing object recognition models executed directly on mobile devices. Our proposal is based on designing a generic solution architecture adaptable to any physical environment, enabling the definition and usage of relevant generic objects within the environment to determine the users' current location. This proposal uses Computer Vision, employing object recognition models for positioning. This kind of indoor positioning benefits from the growth of smartphones' functionalities and capabilities, thus avoiding the need to install additional infrastructures in physical spaces. A specific implementation of this architecture for React Native is presented, using the TensorFlow platform to support object recognition. This implementation allows demonstrating how this positioning works through concrete use cases. In addition, some lessons learned are discussed, which we hope will contribute to this topic.2024info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/12347enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-031-70807-7_3info:eu-repo/semantics/altIdentifier/isbn/978-3-031-70807-7info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-10-23T11:14:12Zoai:digital.cic.gba.gob.ar:11746/12347Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-10-23 11:14:12.451CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Object Recognition Models for Indoor Users’ Location
title Object Recognition Models for Indoor Users’ Location
spellingShingle Object Recognition Models for Indoor Users’ Location
Borrelli, Franco Martín
Ciencias de la Computación e Información
Object Recognition Models
Indoor Location
User Location
Lightweight Networks
title_short Object Recognition Models for Indoor Users’ Location
title_full Object Recognition Models for Indoor Users’ Location
title_fullStr Object Recognition Models for Indoor Users’ Location
title_full_unstemmed Object Recognition Models for Indoor Users’ Location
title_sort Object Recognition Models for Indoor Users’ Location
dc.creator.none.fl_str_mv Borrelli, Franco Martín
Challiol, Cecilia
author Borrelli, Franco Martín
author_facet Borrelli, Franco Martín
Challiol, Cecilia
author_role author
author2 Challiol, Cecilia
author2_role author
dc.subject.none.fl_str_mv Ciencias de la Computación e Información
Object Recognition Models
Indoor Location
User Location
Lightweight Networks
topic Ciencias de la Computación e Información
Object Recognition Models
Indoor Location
User Location
Lightweight Networks
dc.description.none.fl_txt_mv Despite technological advances, precise positioning within buildings remains a considerable challenge. In this context, the present paper explores the research of user location in indoor spaces, embracing object recognition models executed directly on mobile devices. Our proposal is based on designing a generic solution architecture adaptable to any physical environment, enabling the definition and usage of relevant generic objects within the environment to determine the users' current location. This proposal uses Computer Vision, employing object recognition models for positioning. This kind of indoor positioning benefits from the growth of smartphones' functionalities and capabilities, thus avoiding the need to install additional infrastructures in physical spaces. A specific implementation of this architecture for React Native is presented, using the TensorFlow platform to support object recognition. This implementation allows demonstrating how this positioning works through concrete use cases. In addition, some lessons learned are discussed, which we hope will contribute to this topic.
description Despite technological advances, precise positioning within buildings remains a considerable challenge. In this context, the present paper explores the research of user location in indoor spaces, embracing object recognition models executed directly on mobile devices. Our proposal is based on designing a generic solution architecture adaptable to any physical environment, enabling the definition and usage of relevant generic objects within the environment to determine the users' current location. This proposal uses Computer Vision, employing object recognition models for positioning. This kind of indoor positioning benefits from the growth of smartphones' functionalities and capabilities, thus avoiding the need to install additional infrastructures in physical spaces. A specific implementation of this architecture for React Native is presented, using the TensorFlow platform to support object recognition. This implementation allows demonstrating how this positioning works through concrete use cases. In addition, some lessons learned are discussed, which we hope will contribute to this topic.
publishDate 2024
dc.date.none.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/12347
url https://digital.cic.gba.gob.ar/handle/11746/12347
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-031-70807-7_3
info:eu-repo/semantics/altIdentifier/isbn/978-3-031-70807-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1846783874571436032
score 12.982451