Effect of Production Costs on the Price per Ton of Sugarcane: The Case of Brazil
- Autores
- de Oliveira, Sandra Cristina; Rodrigues de Amorim, Fernando; Ceron Barbosa, Cássio; Galvez de Andrade, Alequexandre; Del Giorgio Solfa, Federico
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The costs of agricultural inputs added to those of labor represent almost a third of the total cost of Brazilian sugarcane production. This study analyzes the behavior of the price per ton of sugarcane in Brazil, relating it to the main production costs of this cultivation. Twelve price indicators from January 2015 to December 2020 were evaluated. First, the data were adjusted to a multiple linear regression model to identify the significant variables on variation in the price per ton of sugarcane. Then, the Monte Carlo simulation was used to measure the level of certainty of occurrence of these variables, and forecasts were obtained from the adjustment of ARIMA models. The results showed the influence of the costs of diesel oil, two agricultural pesticides, and daily laborers on the price of sugarcane, besides an increasing trend of its, providing relevant short-term projections for decision-making about investments in the agribusiness sector.
- Materia
-
Economía y Negocios
Brazilian agribusiness
sugarcane production
linear regression
Monte Carlo simulation
ARIMA models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/11674
Ver los metadatos del registro completo
id |
CICBA_47df9ac16aa24bc502e180cbe0e5e6a4 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/11674 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Effect of Production Costs on the Price per Ton of Sugarcane: The Case of Brazilde Oliveira, Sandra CristinaRodrigues de Amorim, FernandoCeron Barbosa, CássioGalvez de Andrade, AlequexandreDel Giorgio Solfa, FedericoEconomía y NegociosBrazilian agribusinesssugarcane productionlinear regressionMonte Carlo simulationARIMA modelsThe costs of agricultural inputs added to those of labor represent almost a third of the total cost of Brazilian sugarcane production. This study analyzes the behavior of the price per ton of sugarcane in Brazil, relating it to the main production costs of this cultivation. Twelve price indicators from January 2015 to December 2020 were evaluated. First, the data were adjusted to a multiple linear regression model to identify the significant variables on variation in the price per ton of sugarcane. Then, the Monte Carlo simulation was used to measure the level of certainty of occurrence of these variables, and forecasts were obtained from the adjustment of ARIMA models. The results showed the influence of the costs of diesel oil, two agricultural pesticides, and daily laborers on the price of sugarcane, besides an increasing trend of its, providing relevant short-term projections for decision-making about investments in the agribusiness sector.2022-09-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11674enginfo:eu-repo/semantics/altIdentifier/hdl/10915/142724info:eu-repo/semantics/altIdentifier/doi/10.11114/ijsss.v10i6.5688info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-10-16T09:27:22Zoai:digital.cic.gba.gob.ar:11746/11674Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-10-16 09:27:22.422CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Effect of Production Costs on the Price per Ton of Sugarcane: The Case of Brazil |
title |
Effect of Production Costs on the Price per Ton of Sugarcane: The Case of Brazil |
spellingShingle |
Effect of Production Costs on the Price per Ton of Sugarcane: The Case of Brazil de Oliveira, Sandra Cristina Economía y Negocios Brazilian agribusiness sugarcane production linear regression Monte Carlo simulation ARIMA models |
title_short |
Effect of Production Costs on the Price per Ton of Sugarcane: The Case of Brazil |
title_full |
Effect of Production Costs on the Price per Ton of Sugarcane: The Case of Brazil |
title_fullStr |
Effect of Production Costs on the Price per Ton of Sugarcane: The Case of Brazil |
title_full_unstemmed |
Effect of Production Costs on the Price per Ton of Sugarcane: The Case of Brazil |
title_sort |
Effect of Production Costs on the Price per Ton of Sugarcane: The Case of Brazil |
dc.creator.none.fl_str_mv |
de Oliveira, Sandra Cristina Rodrigues de Amorim, Fernando Ceron Barbosa, Cássio Galvez de Andrade, Alequexandre Del Giorgio Solfa, Federico |
author |
de Oliveira, Sandra Cristina |
author_facet |
de Oliveira, Sandra Cristina Rodrigues de Amorim, Fernando Ceron Barbosa, Cássio Galvez de Andrade, Alequexandre Del Giorgio Solfa, Federico |
author_role |
author |
author2 |
Rodrigues de Amorim, Fernando Ceron Barbosa, Cássio Galvez de Andrade, Alequexandre Del Giorgio Solfa, Federico |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Economía y Negocios Brazilian agribusiness sugarcane production linear regression Monte Carlo simulation ARIMA models |
topic |
Economía y Negocios Brazilian agribusiness sugarcane production linear regression Monte Carlo simulation ARIMA models |
dc.description.none.fl_txt_mv |
The costs of agricultural inputs added to those of labor represent almost a third of the total cost of Brazilian sugarcane production. This study analyzes the behavior of the price per ton of sugarcane in Brazil, relating it to the main production costs of this cultivation. Twelve price indicators from January 2015 to December 2020 were evaluated. First, the data were adjusted to a multiple linear regression model to identify the significant variables on variation in the price per ton of sugarcane. Then, the Monte Carlo simulation was used to measure the level of certainty of occurrence of these variables, and forecasts were obtained from the adjustment of ARIMA models. The results showed the influence of the costs of diesel oil, two agricultural pesticides, and daily laborers on the price of sugarcane, besides an increasing trend of its, providing relevant short-term projections for decision-making about investments in the agribusiness sector. |
description |
The costs of agricultural inputs added to those of labor represent almost a third of the total cost of Brazilian sugarcane production. This study analyzes the behavior of the price per ton of sugarcane in Brazil, relating it to the main production costs of this cultivation. Twelve price indicators from January 2015 to December 2020 were evaluated. First, the data were adjusted to a multiple linear regression model to identify the significant variables on variation in the price per ton of sugarcane. Then, the Monte Carlo simulation was used to measure the level of certainty of occurrence of these variables, and forecasts were obtained from the adjustment of ARIMA models. The results showed the influence of the costs of diesel oil, two agricultural pesticides, and daily laborers on the price of sugarcane, besides an increasing trend of its, providing relevant short-term projections for decision-making about investments in the agribusiness sector. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-23 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/11674 |
url |
https://digital.cic.gba.gob.ar/handle/11746/11674 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/hdl/10915/142724 info:eu-repo/semantics/altIdentifier/doi/10.11114/ijsss.v10i6.5688 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1846142623918587904 |
score |
12.712165 |