Consequences of the simultaneous formation of giant planets by the core accretion mechanism

Autores
Guilera, Octavio M.; Brunini, Adrián; Benvenuto, Omar Gustavo
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. The core accretion mechanism is presently the most widely accepted cause of the formation of giant planets. For simplicity, most models presently assume that the growth of planetary embryos occurs in isolation. Aims. We explore how the simultaneous growth of two embryos at the present locations of Jupiter and Saturn affects the outcome of planetary formation. Methods. We model planet formation on the basis of the core accretion scenario and include several key physical ingredients. We consider a protoplanetary gas disk that exponentially decays with time. For planetesimals, we allow for a distribution of sizes from 100 m to 100 km with most of the mass in the smaller objects. We include planetesimal migration as well as different profiles for the surface density Σ of the disk. The core growth is computed in the framework of the oligarchic growth regime and includes the viscous enhancement of the planetesimal capture cross-section. Planet migration is ignored. Results. By comparing calculations assuming formation of embryos in isolation to calculations with simultaneous embryo growth, we find that the growth of one embryo generally significantly affects the other. This occurs in spite of the feeding zones of each planet never overlapping. The results may be classified as a function of the gas surface density profile Σ: if Σ ∝ r−3/2 and the protoplanetary disk is rather massive, Jupiter’s formation inhibits the growth of Saturn. If Σ ∝ r−1 isolated and simultaneous formation lead to very similar outcomes; in the the case of Σ ∝ r−1/2 Saturn grows faster and induces a density wave that later accelerates the formation of Jupiter. Conclusions. Our results indicate that the simultaneous growth of several embryos impacts the final outcome and should be taken into account by planet formation models.
Materia
Astronomía
Planetas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/4336

id CICBA_3a498fb59388e02e907c1b880677537c
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/4336
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Consequences of the simultaneous formation of giant planets by the core accretion mechanismGuilera, Octavio M.Brunini, AdriánBenvenuto, Omar GustavoAstronomíaPlanetasContext. The core accretion mechanism is presently the most widely accepted cause of the formation of giant planets. For simplicity, most models presently assume that the growth of planetary embryos occurs in isolation. Aims. We explore how the simultaneous growth of two embryos at the present locations of Jupiter and Saturn affects the outcome of planetary formation. Methods. We model planet formation on the basis of the core accretion scenario and include several key physical ingredients. We consider a protoplanetary gas disk that exponentially decays with time. For planetesimals, we allow for a distribution of sizes from 100 m to 100 km with most of the mass in the smaller objects. We include planetesimal migration as well as different profiles for the surface density Σ of the disk. The core growth is computed in the framework of the oligarchic growth regime and includes the viscous enhancement of the planetesimal capture cross-section. Planet migration is ignored. Results. By comparing calculations assuming formation of embryos in isolation to calculations with simultaneous embryo growth, we find that the growth of one embryo generally significantly affects the other. This occurs in spite of the feeding zones of each planet never overlapping. The results may be classified as a function of the gas surface density profile Σ: if Σ ∝ r−3/2 and the protoplanetary disk is rather massive, Jupiter’s formation inhibits the growth of Saturn. If Σ ∝ r−1 isolated and simultaneous formation lead to very similar outcomes; in the the case of Σ ∝ r−1/2 Saturn grows faster and induces a density wave that later accelerates the formation of Jupiter. Conclusions. Our results indicate that the simultaneous growth of several embryos impacts the final outcome and should be taken into account by planet formation models.EDP Sciences2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/4336enginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201014365info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:06Zoai:digital.cic.gba.gob.ar:11746/4336Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:06.927CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Consequences of the simultaneous formation of giant planets by the core accretion mechanism
title Consequences of the simultaneous formation of giant planets by the core accretion mechanism
spellingShingle Consequences of the simultaneous formation of giant planets by the core accretion mechanism
Guilera, Octavio M.
Astronomía
Planetas
title_short Consequences of the simultaneous formation of giant planets by the core accretion mechanism
title_full Consequences of the simultaneous formation of giant planets by the core accretion mechanism
title_fullStr Consequences of the simultaneous formation of giant planets by the core accretion mechanism
title_full_unstemmed Consequences of the simultaneous formation of giant planets by the core accretion mechanism
title_sort Consequences of the simultaneous formation of giant planets by the core accretion mechanism
dc.creator.none.fl_str_mv Guilera, Octavio M.
Brunini, Adrián
Benvenuto, Omar Gustavo
author Guilera, Octavio M.
author_facet Guilera, Octavio M.
Brunini, Adrián
Benvenuto, Omar Gustavo
author_role author
author2 Brunini, Adrián
Benvenuto, Omar Gustavo
author2_role author
author
dc.subject.none.fl_str_mv Astronomía
Planetas
topic Astronomía
Planetas
dc.description.none.fl_txt_mv Context. The core accretion mechanism is presently the most widely accepted cause of the formation of giant planets. For simplicity, most models presently assume that the growth of planetary embryos occurs in isolation. Aims. We explore how the simultaneous growth of two embryos at the present locations of Jupiter and Saturn affects the outcome of planetary formation. Methods. We model planet formation on the basis of the core accretion scenario and include several key physical ingredients. We consider a protoplanetary gas disk that exponentially decays with time. For planetesimals, we allow for a distribution of sizes from 100 m to 100 km with most of the mass in the smaller objects. We include planetesimal migration as well as different profiles for the surface density Σ of the disk. The core growth is computed in the framework of the oligarchic growth regime and includes the viscous enhancement of the planetesimal capture cross-section. Planet migration is ignored. Results. By comparing calculations assuming formation of embryos in isolation to calculations with simultaneous embryo growth, we find that the growth of one embryo generally significantly affects the other. This occurs in spite of the feeding zones of each planet never overlapping. The results may be classified as a function of the gas surface density profile Σ: if Σ ∝ r−3/2 and the protoplanetary disk is rather massive, Jupiter’s formation inhibits the growth of Saturn. If Σ ∝ r−1 isolated and simultaneous formation lead to very similar outcomes; in the the case of Σ ∝ r−1/2 Saturn grows faster and induces a density wave that later accelerates the formation of Jupiter. Conclusions. Our results indicate that the simultaneous growth of several embryos impacts the final outcome and should be taken into account by planet formation models.
description Context. The core accretion mechanism is presently the most widely accepted cause of the formation of giant planets. For simplicity, most models presently assume that the growth of planetary embryos occurs in isolation. Aims. We explore how the simultaneous growth of two embryos at the present locations of Jupiter and Saturn affects the outcome of planetary formation. Methods. We model planet formation on the basis of the core accretion scenario and include several key physical ingredients. We consider a protoplanetary gas disk that exponentially decays with time. For planetesimals, we allow for a distribution of sizes from 100 m to 100 km with most of the mass in the smaller objects. We include planetesimal migration as well as different profiles for the surface density Σ of the disk. The core growth is computed in the framework of the oligarchic growth regime and includes the viscous enhancement of the planetesimal capture cross-section. Planet migration is ignored. Results. By comparing calculations assuming formation of embryos in isolation to calculations with simultaneous embryo growth, we find that the growth of one embryo generally significantly affects the other. This occurs in spite of the feeding zones of each planet never overlapping. The results may be classified as a function of the gas surface density profile Σ: if Σ ∝ r−3/2 and the protoplanetary disk is rather massive, Jupiter’s formation inhibits the growth of Saturn. If Σ ∝ r−1 isolated and simultaneous formation lead to very similar outcomes; in the the case of Σ ∝ r−1/2 Saturn grows faster and induces a density wave that later accelerates the formation of Jupiter. Conclusions. Our results indicate that the simultaneous growth of several embryos impacts the final outcome and should be taken into account by planet formation models.
publishDate 2010
dc.date.none.fl_str_mv 2010-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/4336
url https://digital.cic.gba.gob.ar/handle/11746/4336
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201014365
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618600780922880
score 13.070432