Consequences of the simultaneous formation of giant planets by the core accretion mechanism

Autores
Guilera, Octavio Miguel; Brunini, Adrian; Benvenuto, Omar Gustavo
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. The core accretion mechanism is presently the most widely accepted cause of the formation of giant planets. For simplicity, most models presently assume that the growth of planetary embryos occurs in isolation. Aims: We explore how the simultaneous growth of two embryos at the present locations of Jupiter and Saturn affects the outcome of planetary formation. Methods: We model planet formation on the basis of the core accretion scenario and include several key physical ingredients. We consider a protoplanetary gas disk that exponentially decays with time. For planetesimals, we allow for a distribution of sizes from 100 m to 100 km with most of the mass in the smaller objects. We include planetesimal migration as well as different profiles for the surface density Σ of the disk. The core growth is computed in the framework of the oligarchic growth regime and includes the viscous enhancement of the planetesimal capture cross-section. Planet migration is ignored. Results: By comparing calculations assuming formation of embryos in isolation to calculations with simultaneous embryo growth, we find that the growth of one embryo generally significantly affects the other. This occurs in spite of the feeding zones of each planet never overlapping. The results may be classified as a function of the gas surface density profile Σ: if Σ ∝ r-3/2 and the protoplanetary disk is rather massive, Jupiter's formation inhibits the growth of Saturn. If Σ ∝ r-1 isolated and simultaneous formation lead to very similar outcomes; in the the case of Σ ∝ r-1/2 Saturn grows faster and induces a density wave that later accelerates the formation of Jupiter. Conclusions: Our results indicate that the simultaneous growth of several embryos impacts the final outcome and should be taken into account by planet formation models.
Fil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Brunini, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Benvenuto, Omar Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Materia
Planets
Planet disk interactions
Numerical methods
Satellites
Formation of planets
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42796

id CONICETDig_37c178af28cae4747ac8b707b4a950b9
oai_identifier_str oai:ri.conicet.gov.ar:11336/42796
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Consequences of the simultaneous formation of giant planets by the core accretion mechanismGuilera, Octavio MiguelBrunini, AdrianBenvenuto, Omar GustavoPlanetsPlanet disk interactionsNumerical methodsSatellitesFormation of planetshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. The core accretion mechanism is presently the most widely accepted cause of the formation of giant planets. For simplicity, most models presently assume that the growth of planetary embryos occurs in isolation. Aims: We explore how the simultaneous growth of two embryos at the present locations of Jupiter and Saturn affects the outcome of planetary formation. Methods: We model planet formation on the basis of the core accretion scenario and include several key physical ingredients. We consider a protoplanetary gas disk that exponentially decays with time. For planetesimals, we allow for a distribution of sizes from 100 m to 100 km with most of the mass in the smaller objects. We include planetesimal migration as well as different profiles for the surface density Σ of the disk. The core growth is computed in the framework of the oligarchic growth regime and includes the viscous enhancement of the planetesimal capture cross-section. Planet migration is ignored. Results: By comparing calculations assuming formation of embryos in isolation to calculations with simultaneous embryo growth, we find that the growth of one embryo generally significantly affects the other. This occurs in spite of the feeding zones of each planet never overlapping. The results may be classified as a function of the gas surface density profile Σ: if Σ ∝ r-3/2 and the protoplanetary disk is rather massive, Jupiter's formation inhibits the growth of Saturn. If Σ ∝ r-1 isolated and simultaneous formation lead to very similar outcomes; in the the case of Σ ∝ r-1/2 Saturn grows faster and induces a density wave that later accelerates the formation of Jupiter. Conclusions: Our results indicate that the simultaneous growth of several embryos impacts the final outcome and should be taken into account by planet formation models.Fil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Brunini, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Benvenuto, Omar Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaEDP Sciences2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42796Guilera, Octavio Miguel; Brunini, Adrian; Benvenuto, Omar Gustavo; Consequences of the simultaneous formation of giant planets by the core accretion mechanism; EDP Sciences; Astronomy and Astrophysics; 521; A50; 10-2010; 1-140004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201014365info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2010/13/aa14365-10/aa14365-10.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:10Zoai:ri.conicet.gov.ar:11336/42796instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:10.875CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Consequences of the simultaneous formation of giant planets by the core accretion mechanism
title Consequences of the simultaneous formation of giant planets by the core accretion mechanism
spellingShingle Consequences of the simultaneous formation of giant planets by the core accretion mechanism
Guilera, Octavio Miguel
Planets
Planet disk interactions
Numerical methods
Satellites
Formation of planets
title_short Consequences of the simultaneous formation of giant planets by the core accretion mechanism
title_full Consequences of the simultaneous formation of giant planets by the core accretion mechanism
title_fullStr Consequences of the simultaneous formation of giant planets by the core accretion mechanism
title_full_unstemmed Consequences of the simultaneous formation of giant planets by the core accretion mechanism
title_sort Consequences of the simultaneous formation of giant planets by the core accretion mechanism
dc.creator.none.fl_str_mv Guilera, Octavio Miguel
Brunini, Adrian
Benvenuto, Omar Gustavo
author Guilera, Octavio Miguel
author_facet Guilera, Octavio Miguel
Brunini, Adrian
Benvenuto, Omar Gustavo
author_role author
author2 Brunini, Adrian
Benvenuto, Omar Gustavo
author2_role author
author
dc.subject.none.fl_str_mv Planets
Planet disk interactions
Numerical methods
Satellites
Formation of planets
topic Planets
Planet disk interactions
Numerical methods
Satellites
Formation of planets
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. The core accretion mechanism is presently the most widely accepted cause of the formation of giant planets. For simplicity, most models presently assume that the growth of planetary embryos occurs in isolation. Aims: We explore how the simultaneous growth of two embryos at the present locations of Jupiter and Saturn affects the outcome of planetary formation. Methods: We model planet formation on the basis of the core accretion scenario and include several key physical ingredients. We consider a protoplanetary gas disk that exponentially decays with time. For planetesimals, we allow for a distribution of sizes from 100 m to 100 km with most of the mass in the smaller objects. We include planetesimal migration as well as different profiles for the surface density Σ of the disk. The core growth is computed in the framework of the oligarchic growth regime and includes the viscous enhancement of the planetesimal capture cross-section. Planet migration is ignored. Results: By comparing calculations assuming formation of embryos in isolation to calculations with simultaneous embryo growth, we find that the growth of one embryo generally significantly affects the other. This occurs in spite of the feeding zones of each planet never overlapping. The results may be classified as a function of the gas surface density profile Σ: if Σ ∝ r-3/2 and the protoplanetary disk is rather massive, Jupiter's formation inhibits the growth of Saturn. If Σ ∝ r-1 isolated and simultaneous formation lead to very similar outcomes; in the the case of Σ ∝ r-1/2 Saturn grows faster and induces a density wave that later accelerates the formation of Jupiter. Conclusions: Our results indicate that the simultaneous growth of several embryos impacts the final outcome and should be taken into account by planet formation models.
Fil: Guilera, Octavio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Brunini, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Benvenuto, Omar Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
description Context. The core accretion mechanism is presently the most widely accepted cause of the formation of giant planets. For simplicity, most models presently assume that the growth of planetary embryos occurs in isolation. Aims: We explore how the simultaneous growth of two embryos at the present locations of Jupiter and Saturn affects the outcome of planetary formation. Methods: We model planet formation on the basis of the core accretion scenario and include several key physical ingredients. We consider a protoplanetary gas disk that exponentially decays with time. For planetesimals, we allow for a distribution of sizes from 100 m to 100 km with most of the mass in the smaller objects. We include planetesimal migration as well as different profiles for the surface density Σ of the disk. The core growth is computed in the framework of the oligarchic growth regime and includes the viscous enhancement of the planetesimal capture cross-section. Planet migration is ignored. Results: By comparing calculations assuming formation of embryos in isolation to calculations with simultaneous embryo growth, we find that the growth of one embryo generally significantly affects the other. This occurs in spite of the feeding zones of each planet never overlapping. The results may be classified as a function of the gas surface density profile Σ: if Σ ∝ r-3/2 and the protoplanetary disk is rather massive, Jupiter's formation inhibits the growth of Saturn. If Σ ∝ r-1 isolated and simultaneous formation lead to very similar outcomes; in the the case of Σ ∝ r-1/2 Saturn grows faster and induces a density wave that later accelerates the formation of Jupiter. Conclusions: Our results indicate that the simultaneous growth of several embryos impacts the final outcome and should be taken into account by planet formation models.
publishDate 2010
dc.date.none.fl_str_mv 2010-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42796
Guilera, Octavio Miguel; Brunini, Adrian; Benvenuto, Omar Gustavo; Consequences of the simultaneous formation of giant planets by the core accretion mechanism; EDP Sciences; Astronomy and Astrophysics; 521; A50; 10-2010; 1-14
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42796
identifier_str_mv Guilera, Octavio Miguel; Brunini, Adrian; Benvenuto, Omar Gustavo; Consequences of the simultaneous formation of giant planets by the core accretion mechanism; EDP Sciences; Astronomy and Astrophysics; 521; A50; 10-2010; 1-14
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201014365
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2010/13/aa14365-10/aa14365-10.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613735818199040
score 13.070432