What the Semantic Web can do for Cognitive Digital Twins: Challenges and Opportunities
- Autores
- Lezoche, Mario; Torres, Diego
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The Cognitive Digital Twin (CDT) is an advanced version of the Digital Twin model. It integrates cognitive computing technologies to create systems that not only connect but also reason, learn from past experiences, and make informed decisions. Integrating machine learning algorithms and artificial intelligence allows CDTs to process and interpret data. This cognitive capability enables the digital twin to function with a layer of intelligence that mimics human cognitive abilities, making the system adaptable to its environment and capable of handling complex decision-making processes autonomously. The cognitive features of CDTs are crucial as they enable the system to predict future states, identify potential problems before they occur, and suggest mitigating actions. Furthermore, semantic web technologies can facilitate advanced analytics and machine learning within CDTs. This article offers a rapid analysis of how Semantic Web approaches can support several aspects of CDT models.
- Materia
-
Ciencias de la Computación e Información
Cognitive Digital Twins
Semantic Web
Industry 4.0 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/12549
Ver los metadatos del registro completo
id |
CICBA_301a6777878c64ffa4d7bc2c88fd5afe |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/12549 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
What the Semantic Web can do for Cognitive Digital Twins: Challenges and OpportunitiesLezoche, MarioTorres, DiegoCiencias de la Computación e InformaciónCognitive Digital TwinsSemantic WebIndustry 4.0The Cognitive Digital Twin (CDT) is an advanced version of the Digital Twin model. It integrates cognitive computing technologies to create systems that not only connect but also reason, learn from past experiences, and make informed decisions. Integrating machine learning algorithms and artificial intelligence allows CDTs to process and interpret data. This cognitive capability enables the digital twin to function with a layer of intelligence that mimics human cognitive abilities, making the system adaptable to its environment and capable of handling complex decision-making processes autonomously. The cognitive features of CDTs are crucial as they enable the system to predict future states, identify potential problems before they occur, and suggest mitigating actions. Furthermore, semantic web technologies can facilitate advanced analytics and machine learning within CDTs. This article offers a rapid analysis of how Semantic Web approaches can support several aspects of CDT models.2025info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/12549enginfo:eu-repo/semantics/altIdentifier/isbn/978-3-031-91690-8info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-031-91690-8_18info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:39:59Zoai:digital.cic.gba.gob.ar:11746/12549Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:39:59.574CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
What the Semantic Web can do for Cognitive Digital Twins: Challenges and Opportunities |
title |
What the Semantic Web can do for Cognitive Digital Twins: Challenges and Opportunities |
spellingShingle |
What the Semantic Web can do for Cognitive Digital Twins: Challenges and Opportunities Lezoche, Mario Ciencias de la Computación e Información Cognitive Digital Twins Semantic Web Industry 4.0 |
title_short |
What the Semantic Web can do for Cognitive Digital Twins: Challenges and Opportunities |
title_full |
What the Semantic Web can do for Cognitive Digital Twins: Challenges and Opportunities |
title_fullStr |
What the Semantic Web can do for Cognitive Digital Twins: Challenges and Opportunities |
title_full_unstemmed |
What the Semantic Web can do for Cognitive Digital Twins: Challenges and Opportunities |
title_sort |
What the Semantic Web can do for Cognitive Digital Twins: Challenges and Opportunities |
dc.creator.none.fl_str_mv |
Lezoche, Mario Torres, Diego |
author |
Lezoche, Mario |
author_facet |
Lezoche, Mario Torres, Diego |
author_role |
author |
author2 |
Torres, Diego |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Cognitive Digital Twins Semantic Web Industry 4.0 |
topic |
Ciencias de la Computación e Información Cognitive Digital Twins Semantic Web Industry 4.0 |
dc.description.none.fl_txt_mv |
The Cognitive Digital Twin (CDT) is an advanced version of the Digital Twin model. It integrates cognitive computing technologies to create systems that not only connect but also reason, learn from past experiences, and make informed decisions. Integrating machine learning algorithms and artificial intelligence allows CDTs to process and interpret data. This cognitive capability enables the digital twin to function with a layer of intelligence that mimics human cognitive abilities, making the system adaptable to its environment and capable of handling complex decision-making processes autonomously. The cognitive features of CDTs are crucial as they enable the system to predict future states, identify potential problems before they occur, and suggest mitigating actions. Furthermore, semantic web technologies can facilitate advanced analytics and machine learning within CDTs. This article offers a rapid analysis of how Semantic Web approaches can support several aspects of CDT models. |
description |
The Cognitive Digital Twin (CDT) is an advanced version of the Digital Twin model. It integrates cognitive computing technologies to create systems that not only connect but also reason, learn from past experiences, and make informed decisions. Integrating machine learning algorithms and artificial intelligence allows CDTs to process and interpret data. This cognitive capability enables the digital twin to function with a layer of intelligence that mimics human cognitive abilities, making the system adaptable to its environment and capable of handling complex decision-making processes autonomously. The cognitive features of CDTs are crucial as they enable the system to predict future states, identify potential problems before they occur, and suggest mitigating actions. Furthermore, semantic web technologies can facilitate advanced analytics and machine learning within CDTs. This article offers a rapid analysis of how Semantic Web approaches can support several aspects of CDT models. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/12549 |
url |
https://digital.cic.gba.gob.ar/handle/11746/12549 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-3-031-91690-8 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-031-91690-8_18 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618591406653441 |
score |
13.070432 |