Incrementally updating Concept Lattices in Arbitrarily Distributed Formal Contexts
- Autores
- Leutwyler, Nicolás; Lezoche, Mario; Panetto, Hervé; Torres, Diego
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Decision-making can be fostered by knowledge extraction methods such as that of Formal Concept Analysis (FCA). On top of that, information is not available as a whole at all times in certain contexts, such as when it is distributed, and consulting all of it would be too timeconsuming. However, there only exists one algorithm for concept lattice batch computation that does not require full knowledge of the entire set of attributes. But batch algorithms are not best suited for stream processing. For that reason, in this article, we present an incremental algorithm for computing a concept lattice coming from an arbitrarily distributed formal context. And finally, we compare its complexity with that of the existing distributed algorithm.
- Materia
-
Ciencias de la Computación e Información
Decision-making systems
Incremental algorithm
Formal Concept Analysis
Algorithm Complexity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/12544
Ver los metadatos del registro completo
| id |
CICBA_01e96a02a3c7345c47953f96cdcfb13e |
|---|---|
| oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/12544 |
| network_acronym_str |
CICBA |
| repository_id_str |
9441 |
| network_name_str |
CIC Digital (CICBA) |
| spelling |
Incrementally updating Concept Lattices in Arbitrarily Distributed Formal ContextsLeutwyler, NicolásLezoche, MarioPanetto, HervéTorres, DiegoCiencias de la Computación e InformaciónDecision-making systemsIncremental algorithmFormal Concept AnalysisAlgorithm ComplexityDecision-making can be fostered by knowledge extraction methods such as that of Formal Concept Analysis (FCA). On top of that, information is not available as a whole at all times in certain contexts, such as when it is distributed, and consulting all of it would be too timeconsuming. However, there only exists one algorithm for concept lattice batch computation that does not require full knowledge of the entire set of attributes. But batch algorithms are not best suited for stream processing. For that reason, in this article, we present an incremental algorithm for computing a concept lattice coming from an arbitrarily distributed formal context. And finally, we compare its complexity with that of the existing distributed algorithm.2025info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/12544enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-031-91690-8_8info:eu-repo/semantics/altIdentifier/isbn/978-3-031-91690-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-11-27T08:33:24Zoai:digital.cic.gba.gob.ar:11746/12544Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-11-27 08:33:24.911CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
| dc.title.none.fl_str_mv |
Incrementally updating Concept Lattices in Arbitrarily Distributed Formal Contexts |
| title |
Incrementally updating Concept Lattices in Arbitrarily Distributed Formal Contexts |
| spellingShingle |
Incrementally updating Concept Lattices in Arbitrarily Distributed Formal Contexts Leutwyler, Nicolás Ciencias de la Computación e Información Decision-making systems Incremental algorithm Formal Concept Analysis Algorithm Complexity |
| title_short |
Incrementally updating Concept Lattices in Arbitrarily Distributed Formal Contexts |
| title_full |
Incrementally updating Concept Lattices in Arbitrarily Distributed Formal Contexts |
| title_fullStr |
Incrementally updating Concept Lattices in Arbitrarily Distributed Formal Contexts |
| title_full_unstemmed |
Incrementally updating Concept Lattices in Arbitrarily Distributed Formal Contexts |
| title_sort |
Incrementally updating Concept Lattices in Arbitrarily Distributed Formal Contexts |
| dc.creator.none.fl_str_mv |
Leutwyler, Nicolás Lezoche, Mario Panetto, Hervé Torres, Diego |
| author |
Leutwyler, Nicolás |
| author_facet |
Leutwyler, Nicolás Lezoche, Mario Panetto, Hervé Torres, Diego |
| author_role |
author |
| author2 |
Lezoche, Mario Panetto, Hervé Torres, Diego |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Decision-making systems Incremental algorithm Formal Concept Analysis Algorithm Complexity |
| topic |
Ciencias de la Computación e Información Decision-making systems Incremental algorithm Formal Concept Analysis Algorithm Complexity |
| dc.description.none.fl_txt_mv |
Decision-making can be fostered by knowledge extraction methods such as that of Formal Concept Analysis (FCA). On top of that, information is not available as a whole at all times in certain contexts, such as when it is distributed, and consulting all of it would be too timeconsuming. However, there only exists one algorithm for concept lattice batch computation that does not require full knowledge of the entire set of attributes. But batch algorithms are not best suited for stream processing. For that reason, in this article, we present an incremental algorithm for computing a concept lattice coming from an arbitrarily distributed formal context. And finally, we compare its complexity with that of the existing distributed algorithm. |
| description |
Decision-making can be fostered by knowledge extraction methods such as that of Formal Concept Analysis (FCA). On top of that, information is not available as a whole at all times in certain contexts, such as when it is distributed, and consulting all of it would be too timeconsuming. However, there only exists one algorithm for concept lattice batch computation that does not require full knowledge of the entire set of attributes. But batch algorithms are not best suited for stream processing. For that reason, in this article, we present an incremental algorithm for computing a concept lattice coming from an arbitrarily distributed formal context. And finally, we compare its complexity with that of the existing distributed algorithm. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/12544 |
| url |
https://digital.cic.gba.gob.ar/handle/11746/12544 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-031-91690-8_8 info:eu-repo/semantics/altIdentifier/isbn/978-3-031-91690-8 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
| reponame_str |
CIC Digital (CICBA) |
| collection |
CIC Digital (CICBA) |
| instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| instacron_str |
CICBA |
| institution |
CICBA |
| repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
| _version_ |
1849948592986390528 |
| score |
13.011256 |