Self-similar asymptotics in non-symmetrical convergent viscous gravity currents

Autores
Perazzo, C.A.; Gratton, J.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
We investigate the evolution of the ridge produced by the non-symmetrical convergent motion of two substrates over which an initially uniform layer of a Newtonian liquid rests. The lack of symmetry of the flow arises because the substrates move with different velocities. We focus on the self-similar regimes that occur in this process. For short times, within the linear regime, the height and the width increase as t1/2 and the profile is symmetric, independently of degree of asymmetry of the motion of the substrates. In the self-similar regime for large time, the height and the width of the ridge follow the same power laws as in the symmetric case, but the profiles are asymmetric. © 2009 IOP Publishing Ltd.
Fil:Perazzo, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gratton, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Phys. Conf. Ser. 2009;166
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_17426588_v166_n_p_Perazzo

id BDUBAFCEN_f7da8da886ed57623b6936e1e6505b72
oai_identifier_str paperaa:paper_17426588_v166_n_p_Perazzo
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Self-similar asymptotics in non-symmetrical convergent viscous gravity currentsPerazzo, C.A.Gratton, J.We investigate the evolution of the ridge produced by the non-symmetrical convergent motion of two substrates over which an initially uniform layer of a Newtonian liquid rests. The lack of symmetry of the flow arises because the substrates move with different velocities. We focus on the self-similar regimes that occur in this process. For short times, within the linear regime, the height and the width increase as t1/2 and the profile is symmetric, independently of degree of asymmetry of the motion of the substrates. In the self-similar regime for large time, the height and the width of the ridge follow the same power laws as in the symmetric case, but the profiles are asymmetric. © 2009 IOP Publishing Ltd.Fil:Perazzo, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gratton, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_17426588_v166_n_p_PerazzoJ. Phys. Conf. Ser. 2009;166reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:35Zpaperaa:paper_17426588_v166_n_p_PerazzoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:36.42Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Self-similar asymptotics in non-symmetrical convergent viscous gravity currents
title Self-similar asymptotics in non-symmetrical convergent viscous gravity currents
spellingShingle Self-similar asymptotics in non-symmetrical convergent viscous gravity currents
Perazzo, C.A.
title_short Self-similar asymptotics in non-symmetrical convergent viscous gravity currents
title_full Self-similar asymptotics in non-symmetrical convergent viscous gravity currents
title_fullStr Self-similar asymptotics in non-symmetrical convergent viscous gravity currents
title_full_unstemmed Self-similar asymptotics in non-symmetrical convergent viscous gravity currents
title_sort Self-similar asymptotics in non-symmetrical convergent viscous gravity currents
dc.creator.none.fl_str_mv Perazzo, C.A.
Gratton, J.
author Perazzo, C.A.
author_facet Perazzo, C.A.
Gratton, J.
author_role author
author2 Gratton, J.
author2_role author
dc.description.none.fl_txt_mv We investigate the evolution of the ridge produced by the non-symmetrical convergent motion of two substrates over which an initially uniform layer of a Newtonian liquid rests. The lack of symmetry of the flow arises because the substrates move with different velocities. We focus on the self-similar regimes that occur in this process. For short times, within the linear regime, the height and the width increase as t1/2 and the profile is symmetric, independently of degree of asymmetry of the motion of the substrates. In the self-similar regime for large time, the height and the width of the ridge follow the same power laws as in the symmetric case, but the profiles are asymmetric. © 2009 IOP Publishing Ltd.
Fil:Perazzo, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gratton, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We investigate the evolution of the ridge produced by the non-symmetrical convergent motion of two substrates over which an initially uniform layer of a Newtonian liquid rests. The lack of symmetry of the flow arises because the substrates move with different velocities. We focus on the self-similar regimes that occur in this process. For short times, within the linear regime, the height and the width increase as t1/2 and the profile is symmetric, independently of degree of asymmetry of the motion of the substrates. In the self-similar regime for large time, the height and the width of the ridge follow the same power laws as in the symmetric case, but the profiles are asymmetric. © 2009 IOP Publishing Ltd.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_17426588_v166_n_p_Perazzo
url http://hdl.handle.net/20.500.12110/paper_17426588_v166_n_p_Perazzo
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Phys. Conf. Ser. 2009;166
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784882711199745
score 12.982451