Asymptotic regimes of ridge and rift formation in a thin viscous sheet model

Autores
Perazzo, C.A.; Gratton, J.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We numerically and theoretically investigate the evolution of the ridges and rifts produced by the convergent and divergent motions of two substrates over which an initially uniform layer of a Newtonian liquid rests. We put particular emphasis on the various asymptotic self-similar and quasi-self-similar regimes that occur in these processes. During the growth of a ridge, two self-similar stages occur; the first takes place in the initial linear phase, and the second is obtained for a large time. Initially, the width and the height of the ridge increase as t 1/2. For a very large time, the width grows as t 3/4, while the height increases as t 1/4. On the other hand, in the process of formation of a rift, there are three self-similar asymptotics. The initial linear phase is similar to that for ridges. The second stage corresponds to the separation of the current in two parts, leaving a dry region in between. Last, for a very large t, each of the two parts in which the current has separated approaches the self-similar viscous dam break solution. © 2008 American Institute of Physics.
Fil:Perazzo, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gratton, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys. Fluids 2008;20(4)
Materia
Asymptotic regimes
Asymptotics
Dam-breaks
Dry region
Linear phase
Self-similar
Thin viscous sheet
Uniform layer
Multiphase flow
Asymptotic analysis
Newtonian liquids
Ocean currents
Viscosity
Separation
Dams
Ridge
Rift
Viscous dam
Viscous sheet model
Asymptotic analysis
Dams
Newtonian liquids
Ocean currents
Viscosity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_10706631_v20_n4_p_Perazzo

id BDUBAFCEN_98928d08c3d7496c6512558968f820e8
oai_identifier_str paperaa:paper_10706631_v20_n4_p_Perazzo
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Asymptotic regimes of ridge and rift formation in a thin viscous sheet modelPerazzo, C.A.Gratton, J.Asymptotic regimesAsymptoticsDam-breaksDry regionLinear phaseSelf-similarThin viscous sheetUniform layerMultiphase flowAsymptotic analysisNewtonian liquidsOcean currentsViscositySeparationDamsRidgeRiftViscous damViscous sheet modelAsymptotic analysisDamsNewtonian liquidsOcean currentsViscosityWe numerically and theoretically investigate the evolution of the ridges and rifts produced by the convergent and divergent motions of two substrates over which an initially uniform layer of a Newtonian liquid rests. We put particular emphasis on the various asymptotic self-similar and quasi-self-similar regimes that occur in these processes. During the growth of a ridge, two self-similar stages occur; the first takes place in the initial linear phase, and the second is obtained for a large time. Initially, the width and the height of the ridge increase as t 1/2. For a very large time, the width grows as t 3/4, while the height increases as t 1/4. On the other hand, in the process of formation of a rift, there are three self-similar asymptotics. The initial linear phase is similar to that for ridges. The second stage corresponds to the separation of the current in two parts, leaving a dry region in between. Last, for a very large t, each of the two parts in which the current has separated approaches the self-similar viscous dam break solution. © 2008 American Institute of Physics.Fil:Perazzo, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gratton, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10706631_v20_n4_p_PerazzoPhys. Fluids 2008;20(4)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:34Zpaperaa:paper_10706631_v20_n4_p_PerazzoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:36.198Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Asymptotic regimes of ridge and rift formation in a thin viscous sheet model
title Asymptotic regimes of ridge and rift formation in a thin viscous sheet model
spellingShingle Asymptotic regimes of ridge and rift formation in a thin viscous sheet model
Perazzo, C.A.
Asymptotic regimes
Asymptotics
Dam-breaks
Dry region
Linear phase
Self-similar
Thin viscous sheet
Uniform layer
Multiphase flow
Asymptotic analysis
Newtonian liquids
Ocean currents
Viscosity
Separation
Dams
Ridge
Rift
Viscous dam
Viscous sheet model
Asymptotic analysis
Dams
Newtonian liquids
Ocean currents
Viscosity
title_short Asymptotic regimes of ridge and rift formation in a thin viscous sheet model
title_full Asymptotic regimes of ridge and rift formation in a thin viscous sheet model
title_fullStr Asymptotic regimes of ridge and rift formation in a thin viscous sheet model
title_full_unstemmed Asymptotic regimes of ridge and rift formation in a thin viscous sheet model
title_sort Asymptotic regimes of ridge and rift formation in a thin viscous sheet model
dc.creator.none.fl_str_mv Perazzo, C.A.
Gratton, J.
author Perazzo, C.A.
author_facet Perazzo, C.A.
Gratton, J.
author_role author
author2 Gratton, J.
author2_role author
dc.subject.none.fl_str_mv Asymptotic regimes
Asymptotics
Dam-breaks
Dry region
Linear phase
Self-similar
Thin viscous sheet
Uniform layer
Multiphase flow
Asymptotic analysis
Newtonian liquids
Ocean currents
Viscosity
Separation
Dams
Ridge
Rift
Viscous dam
Viscous sheet model
Asymptotic analysis
Dams
Newtonian liquids
Ocean currents
Viscosity
topic Asymptotic regimes
Asymptotics
Dam-breaks
Dry region
Linear phase
Self-similar
Thin viscous sheet
Uniform layer
Multiphase flow
Asymptotic analysis
Newtonian liquids
Ocean currents
Viscosity
Separation
Dams
Ridge
Rift
Viscous dam
Viscous sheet model
Asymptotic analysis
Dams
Newtonian liquids
Ocean currents
Viscosity
dc.description.none.fl_txt_mv We numerically and theoretically investigate the evolution of the ridges and rifts produced by the convergent and divergent motions of two substrates over which an initially uniform layer of a Newtonian liquid rests. We put particular emphasis on the various asymptotic self-similar and quasi-self-similar regimes that occur in these processes. During the growth of a ridge, two self-similar stages occur; the first takes place in the initial linear phase, and the second is obtained for a large time. Initially, the width and the height of the ridge increase as t 1/2. For a very large time, the width grows as t 3/4, while the height increases as t 1/4. On the other hand, in the process of formation of a rift, there are three self-similar asymptotics. The initial linear phase is similar to that for ridges. The second stage corresponds to the separation of the current in two parts, leaving a dry region in between. Last, for a very large t, each of the two parts in which the current has separated approaches the self-similar viscous dam break solution. © 2008 American Institute of Physics.
Fil:Perazzo, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gratton, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We numerically and theoretically investigate the evolution of the ridges and rifts produced by the convergent and divergent motions of two substrates over which an initially uniform layer of a Newtonian liquid rests. We put particular emphasis on the various asymptotic self-similar and quasi-self-similar regimes that occur in these processes. During the growth of a ridge, two self-similar stages occur; the first takes place in the initial linear phase, and the second is obtained for a large time. Initially, the width and the height of the ridge increase as t 1/2. For a very large time, the width grows as t 3/4, while the height increases as t 1/4. On the other hand, in the process of formation of a rift, there are three self-similar asymptotics. The initial linear phase is similar to that for ridges. The second stage corresponds to the separation of the current in two parts, leaving a dry region in between. Last, for a very large t, each of the two parts in which the current has separated approaches the self-similar viscous dam break solution. © 2008 American Institute of Physics.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_10706631_v20_n4_p_Perazzo
url http://hdl.handle.net/20.500.12110/paper_10706631_v20_n4_p_Perazzo
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys. Fluids 2008;20(4)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340704158744576
score 12.623145