The number of roots of a lacunary bivariate polynomial on a line
- Autores
- Avendaño, M.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of f, in the logarithm of the degree of f, in the degree of the extension K / Q and in the logarithmic height of a, b and f. © 2009 Elsevier Ltd. All rights reserved.
Fil:Avendaño, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Symb. Comput. 2009;44(9):1280-1284
- Materia
-
Descartes' rule of signs
Factorization of polynomials
Fewnomials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_07477171_v44_n9_p1280_Avendano
Ver los metadatos del registro completo
id |
BDUBAFCEN_f3cc2e274883694f9ea5d1cfb5f3df5f |
---|---|
oai_identifier_str |
paperaa:paper_07477171_v44_n9_p1280_Avendano |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
The number of roots of a lacunary bivariate polynomial on a lineAvendaño, M.Descartes' rule of signsFactorization of polynomialsFewnomialsWe prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of f, in the logarithm of the degree of f, in the degree of the extension K / Q and in the logarithmic height of a, b and f. © 2009 Elsevier Ltd. All rights reserved.Fil:Avendaño, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1280_AvendanoJ. Symb. Comput. 2009;44(9):1280-1284reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_07477171_v44_n9_p1280_AvendanoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.366Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
The number of roots of a lacunary bivariate polynomial on a line |
title |
The number of roots of a lacunary bivariate polynomial on a line |
spellingShingle |
The number of roots of a lacunary bivariate polynomial on a line Avendaño, M. Descartes' rule of signs Factorization of polynomials Fewnomials |
title_short |
The number of roots of a lacunary bivariate polynomial on a line |
title_full |
The number of roots of a lacunary bivariate polynomial on a line |
title_fullStr |
The number of roots of a lacunary bivariate polynomial on a line |
title_full_unstemmed |
The number of roots of a lacunary bivariate polynomial on a line |
title_sort |
The number of roots of a lacunary bivariate polynomial on a line |
dc.creator.none.fl_str_mv |
Avendaño, M. |
author |
Avendaño, M. |
author_facet |
Avendaño, M. |
author_role |
author |
dc.subject.none.fl_str_mv |
Descartes' rule of signs Factorization of polynomials Fewnomials |
topic |
Descartes' rule of signs Factorization of polynomials Fewnomials |
dc.description.none.fl_txt_mv |
We prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of f, in the logarithm of the degree of f, in the degree of the extension K / Q and in the logarithmic height of a, b and f. © 2009 Elsevier Ltd. All rights reserved. Fil:Avendaño, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of f, in the logarithm of the degree of f, in the degree of the extension K / Q and in the logarithmic height of a, b and f. © 2009 Elsevier Ltd. All rights reserved. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1280_Avendano |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1280_Avendano |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Symb. Comput. 2009;44(9):1280-1284 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739481313280 |
score |
13.070432 |