The number of roots of a lacunary bivariate polynomial on a line
- Autores
- Avendaño, M.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of f, in the logarithm of the degree of f, in the degree of the extension K / Q and in the logarithmic height of a, b and f. © 2009 Elsevier Ltd. All rights reserved.
Fil:Avendaño, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Symb. Comput. 2009;44(9):1280-1284
- Materia
-
Descartes' rule of signs
Factorization of polynomials
Fewnomials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_07477171_v44_n9_p1280_Avendano
Ver los metadatos del registro completo
| id |
BDUBAFCEN_f3cc2e274883694f9ea5d1cfb5f3df5f |
|---|---|
| oai_identifier_str |
paperaa:paper_07477171_v44_n9_p1280_Avendano |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
The number of roots of a lacunary bivariate polynomial on a lineAvendaño, M.Descartes' rule of signsFactorization of polynomialsFewnomialsWe prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of f, in the logarithm of the degree of f, in the degree of the extension K / Q and in the logarithmic height of a, b and f. © 2009 Elsevier Ltd. All rights reserved.Fil:Avendaño, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1280_AvendanoJ. Symb. Comput. 2009;44(9):1280-1284reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:54Zpaperaa:paper_07477171_v44_n9_p1280_AvendanoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:56.391Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
The number of roots of a lacunary bivariate polynomial on a line |
| title |
The number of roots of a lacunary bivariate polynomial on a line |
| spellingShingle |
The number of roots of a lacunary bivariate polynomial on a line Avendaño, M. Descartes' rule of signs Factorization of polynomials Fewnomials |
| title_short |
The number of roots of a lacunary bivariate polynomial on a line |
| title_full |
The number of roots of a lacunary bivariate polynomial on a line |
| title_fullStr |
The number of roots of a lacunary bivariate polynomial on a line |
| title_full_unstemmed |
The number of roots of a lacunary bivariate polynomial on a line |
| title_sort |
The number of roots of a lacunary bivariate polynomial on a line |
| dc.creator.none.fl_str_mv |
Avendaño, M. |
| author |
Avendaño, M. |
| author_facet |
Avendaño, M. |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Descartes' rule of signs Factorization of polynomials Fewnomials |
| topic |
Descartes' rule of signs Factorization of polynomials Fewnomials |
| dc.description.none.fl_txt_mv |
We prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of f, in the logarithm of the degree of f, in the degree of the extension K / Q and in the logarithmic height of a, b and f. © 2009 Elsevier Ltd. All rights reserved. Fil:Avendaño, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
We prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of f, in the logarithm of the degree of f, in the degree of the extension K / Q and in the logarithmic height of a, b and f. © 2009 Elsevier Ltd. All rights reserved. |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1280_Avendano |
| url |
http://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1280_Avendano |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Symb. Comput. 2009;44(9):1280-1284 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046097491034112 |
| score |
12.976206 |