Métodos numéricos para problemas no locales de evolución

Autores
Mastroberti Bersetche, Francisco Vicente
Año de publicación
2019
Idioma
inglés
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Acosta Rodríguez, Gabriel
Descripción
El objetivo de este trabajo es estudiar aproximaciones numéricas para problemas de evolución de la forma C∂αtu + (-Δ)su = f in Ω *(0,T), donde (-Δ)s representa el operador Laplaciano fraccionario en su forma integral y C∂αtu(x,t) denota la derivada de Caputo. Para ser más precisos, (-Δ)su(x)= C(n,s) p.v. ∫ℝn [(u(x)-u(y))/(|x-y|^n+2s)] dy, y C∂αtu(x,T)= { [1/r(k-α)]∫t0[1/(t-r)^α-k+1]∂ku/∂tk(x,r) dr if k-1<αThe aim of this work is to study numerical approximations for evolution problems of the form C∂αtu + (-Δ)su = f in Ω *(0,T), where (-Δ)s stands for the fractional Laplacian operator in its integral form and C∂αtu(x,t)represents the Caputo derivative. To be more precise, (-Δ)su(x)= C(n,s) p.v. ∫ℝn [(u(x)-u(y))/(|x-y|^n+2s)] dy, and C∂αtu(x,T)= { [1/r(k-α)]∫t0[1/(t-r)^α-k+1]∂ku/∂tk(x,r) dr if k-1<αFil: Mastroberti Bersetche, Francisco Vicente. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
LAPLACIANO FRACCIONARIO
DERIVADA DE CAPUTO
METODO DE ELEMENTOS FINITOS
FRACTIONAL LAPLACIAN
CAPUTO DERIVATIVE
FINITE ELEMENT METHOD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n6618_MastrobertiBersetche

id BDUBAFCEN_e4f487f21918e89a4fd3d377d1f6c3eb
oai_identifier_str tesis:tesis_n6618_MastrobertiBersetche
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Métodos numéricos para problemas no locales de evoluciónNumerical methods for non-local evolution problemsMastroberti Bersetche, Francisco VicenteLAPLACIANO FRACCIONARIODERIVADA DE CAPUTOMETODO DE ELEMENTOS FINITOSFRACTIONAL LAPLACIANCAPUTO DERIVATIVEFINITE ELEMENT METHODEl objetivo de este trabajo es estudiar aproximaciones numéricas para problemas de evolución de la forma C∂αtu + (-Δ)su = f in Ω *(0,T), donde (-Δ)s representa el operador Laplaciano fraccionario en su forma integral y C∂αtu(x,t) denota la derivada de Caputo. Para ser más precisos, (-Δ)su(x)= C(n,s) p.v. ∫ℝn [(u(x)-u(y))/(|x-y|^n+2s)] dy, y C∂αtu(x,T)= { [1/r(k-α)]∫t0[1/(t-r)^α-k+1]∂ku/∂tk(x,r) dr if k-1<α<k, k∈ℕ, ∂ku/∂tk(x,t) if α=k∈ℕ. Estudiamos existencia, unicidad y regularidad de las soluciones en el contexto lineal(es decir, f = f(x; t)). Los casos tratados incluyen contrapartes fraccionarias de los modelos de difusión estándar y de ondas. Elementos finitos lineales se utilizan para la variable espacial y técnicas de cuadratura de convolución son usadas para tratar el operador fraccionario en la variable temporal. Estimaciones del error, uniformes en los parámetros de discretización para valores de t lejos de cero, son proporcionadas. Estos resultados son extendidos al caso semilineal con f(u) = u-u^3, siendo este el término no lineal que aparece en las ecuaciones clásicas de Allen-Cahn, utilizadas para modelar la separación de fases para aleaciones binarias. Adicionalmente, el comportamiento asintótico de las soluciones para s→0 es estudiado en este contexto particular. Detalles de implementación, particularmente para el método de elementos finitos, en el cual se ven involucradas matrices de rigidez fraccionarias no esparsas y cuadraturas numéricas para núcleos singulares, son cuidadosamente expuestos.The aim of this work is to study numerical approximations for evolution problems of the form C∂αtu + (-Δ)su = f in Ω *(0,T), where (-Δ)s stands for the fractional Laplacian operator in its integral form and C∂αtu(x,t)represents the Caputo derivative. To be more precise, (-Δ)su(x)= C(n,s) p.v. ∫ℝn [(u(x)-u(y))/(|x-y|^n+2s)] dy, and C∂αtu(x,T)= { [1/r(k-α)]∫t0[1/(t-r)^α-k+1]∂ku/∂tk(x,r) dr if k-1<α<k, k∈ℕ, ∂ku/∂tk(x,t) if α=k∈ℕ. We deal with existence, uniqueness and regularity of solutions in the linear context(i.e. f = f(x,t)). The cases under study include fractional counterparts of the standard diffusion and wave models. Linear finite elements are used for the spatial variable and convolution quadrature techniques for handling the time fractional operator. Error bounds, uniform in the discretization parameters for values of t away from zero, are given. These results are extended to the semi-linear case with f(u) = u-u^3 appearing in the classical Allen-Cahn equations modeling phase separation for binary alloys. Additionally, the asymptotic behaviour of the solutions for s→0 is studied in this particular context. Implementation details, particularly for the finite element method involving full fractional stiffness matrices and numerical quadratures for singular kernels, are carefully documented.Fil: Mastroberti Bersetche, Francisco Vicente. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesAcosta Rodríguez, Gabriel2019-03-06info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n6618_MastrobertiBersetcheenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-04T09:46:11Ztesis:tesis_n6618_MastrobertiBersetcheInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:46:12.492Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Métodos numéricos para problemas no locales de evolución
Numerical methods for non-local evolution problems
title Métodos numéricos para problemas no locales de evolución
spellingShingle Métodos numéricos para problemas no locales de evolución
Mastroberti Bersetche, Francisco Vicente
LAPLACIANO FRACCIONARIO
DERIVADA DE CAPUTO
METODO DE ELEMENTOS FINITOS
FRACTIONAL LAPLACIAN
CAPUTO DERIVATIVE
FINITE ELEMENT METHOD
title_short Métodos numéricos para problemas no locales de evolución
title_full Métodos numéricos para problemas no locales de evolución
title_fullStr Métodos numéricos para problemas no locales de evolución
title_full_unstemmed Métodos numéricos para problemas no locales de evolución
title_sort Métodos numéricos para problemas no locales de evolución
dc.creator.none.fl_str_mv Mastroberti Bersetche, Francisco Vicente
author Mastroberti Bersetche, Francisco Vicente
author_facet Mastroberti Bersetche, Francisco Vicente
author_role author
dc.contributor.none.fl_str_mv Acosta Rodríguez, Gabriel
dc.subject.none.fl_str_mv LAPLACIANO FRACCIONARIO
DERIVADA DE CAPUTO
METODO DE ELEMENTOS FINITOS
FRACTIONAL LAPLACIAN
CAPUTO DERIVATIVE
FINITE ELEMENT METHOD
topic LAPLACIANO FRACCIONARIO
DERIVADA DE CAPUTO
METODO DE ELEMENTOS FINITOS
FRACTIONAL LAPLACIAN
CAPUTO DERIVATIVE
FINITE ELEMENT METHOD
dc.description.none.fl_txt_mv El objetivo de este trabajo es estudiar aproximaciones numéricas para problemas de evolución de la forma C∂αtu + (-Δ)su = f in Ω *(0,T), donde (-Δ)s representa el operador Laplaciano fraccionario en su forma integral y C∂αtu(x,t) denota la derivada de Caputo. Para ser más precisos, (-Δ)su(x)= C(n,s) p.v. ∫ℝn [(u(x)-u(y))/(|x-y|^n+2s)] dy, y C∂αtu(x,T)= { [1/r(k-α)]∫t0[1/(t-r)^α-k+1]∂ku/∂tk(x,r) dr if k-1<α<k, k∈ℕ, ∂ku/∂tk(x,t) if α=k∈ℕ. Estudiamos existencia, unicidad y regularidad de las soluciones en el contexto lineal(es decir, f = f(x; t)). Los casos tratados incluyen contrapartes fraccionarias de los modelos de difusión estándar y de ondas. Elementos finitos lineales se utilizan para la variable espacial y técnicas de cuadratura de convolución son usadas para tratar el operador fraccionario en la variable temporal. Estimaciones del error, uniformes en los parámetros de discretización para valores de t lejos de cero, son proporcionadas. Estos resultados son extendidos al caso semilineal con f(u) = u-u^3, siendo este el término no lineal que aparece en las ecuaciones clásicas de Allen-Cahn, utilizadas para modelar la separación de fases para aleaciones binarias. Adicionalmente, el comportamiento asintótico de las soluciones para s→0 es estudiado en este contexto particular. Detalles de implementación, particularmente para el método de elementos finitos, en el cual se ven involucradas matrices de rigidez fraccionarias no esparsas y cuadraturas numéricas para núcleos singulares, son cuidadosamente expuestos.
The aim of this work is to study numerical approximations for evolution problems of the form C∂αtu + (-Δ)su = f in Ω *(0,T), where (-Δ)s stands for the fractional Laplacian operator in its integral form and C∂αtu(x,t)represents the Caputo derivative. To be more precise, (-Δ)su(x)= C(n,s) p.v. ∫ℝn [(u(x)-u(y))/(|x-y|^n+2s)] dy, and C∂αtu(x,T)= { [1/r(k-α)]∫t0[1/(t-r)^α-k+1]∂ku/∂tk(x,r) dr if k-1<α<k, k∈ℕ, ∂ku/∂tk(x,t) if α=k∈ℕ. We deal with existence, uniqueness and regularity of solutions in the linear context(i.e. f = f(x,t)). The cases under study include fractional counterparts of the standard diffusion and wave models. Linear finite elements are used for the spatial variable and convolution quadrature techniques for handling the time fractional operator. Error bounds, uniform in the discretization parameters for values of t away from zero, are given. These results are extended to the semi-linear case with f(u) = u-u^3 appearing in the classical Allen-Cahn equations modeling phase separation for binary alloys. Additionally, the asymptotic behaviour of the solutions for s→0 is studied in this particular context. Implementation details, particularly for the finite element method involving full fractional stiffness matrices and numerical quadratures for singular kernels, are carefully documented.
Fil: Mastroberti Bersetche, Francisco Vicente. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description El objetivo de este trabajo es estudiar aproximaciones numéricas para problemas de evolución de la forma C∂αtu + (-Δ)su = f in Ω *(0,T), donde (-Δ)s representa el operador Laplaciano fraccionario en su forma integral y C∂αtu(x,t) denota la derivada de Caputo. Para ser más precisos, (-Δ)su(x)= C(n,s) p.v. ∫ℝn [(u(x)-u(y))/(|x-y|^n+2s)] dy, y C∂αtu(x,T)= { [1/r(k-α)]∫t0[1/(t-r)^α-k+1]∂ku/∂tk(x,r) dr if k-1<α<k, k∈ℕ, ∂ku/∂tk(x,t) if α=k∈ℕ. Estudiamos existencia, unicidad y regularidad de las soluciones en el contexto lineal(es decir, f = f(x; t)). Los casos tratados incluyen contrapartes fraccionarias de los modelos de difusión estándar y de ondas. Elementos finitos lineales se utilizan para la variable espacial y técnicas de cuadratura de convolución son usadas para tratar el operador fraccionario en la variable temporal. Estimaciones del error, uniformes en los parámetros de discretización para valores de t lejos de cero, son proporcionadas. Estos resultados son extendidos al caso semilineal con f(u) = u-u^3, siendo este el término no lineal que aparece en las ecuaciones clásicas de Allen-Cahn, utilizadas para modelar la separación de fases para aleaciones binarias. Adicionalmente, el comportamiento asintótico de las soluciones para s→0 es estudiado en este contexto particular. Detalles de implementación, particularmente para el método de elementos finitos, en el cual se ven involucradas matrices de rigidez fraccionarias no esparsas y cuadraturas numéricas para núcleos singulares, son cuidadosamente expuestos.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-06
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n6618_MastrobertiBersetche
url https://hdl.handle.net/20.500.12110/tesis_n6618_MastrobertiBersetche
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340670065344512
score 12.623145