Mecanismo de activación de la proteína quinasa A dependiente de cAMP : proteínas sustrato y de anclaje de PKA de Saccharomyces cerevisiae

Autores
Galello, Fiorella Ariadna
Año de publicación
2011
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Rossi, Silvia Graciela
Descripción
La especificidad en la vía de transducción de señales de cAMP-PKA está determinada por el reconocimiento de la secuencia blanco en el sustrato y por la localización de la quinasa en compartimentos subcelulares. En Saccharomyces cerevisiae los determinantes de la especificidad de la proteína quinasa A (PKA) están menos caracterizados que en mamíferos. Analizamos el comportamiento de los sustratos y los determinantes de secuencia alrededor del sitio de fosforilación de tres proteínas sustrato: Piruvato quinasa 1 (Pyk1), Piruvato quinasa 2 (Pyk2) y Trehalasa neutra (Nth1). La proteína Nth1 es mejor sustrato que la proteína Pyk1 y ambas son fosforiladas tanto por Tpk1 como por Tpk2, dos de las isoformas de la subunidad catalítica de la PKA de levaduras. Las tres proteínas contienen uno o más motivos consenso de PKA, Arg-Arg-X-Ser, pero no todos ellos son fosforilados. Análisis de esos sitios permitieron determinar que los residuos ácidos en la posición P+1 o en el extremo N-terminal son deletéreos para la reacción catalítica, mientras que los residuos positivos presentes más allá de las posiciones P-2 y P-3 la favorecen. Un residuo hidrofóbico voluminoso en posición P+1 no resulta crítico, a diferencia de lo que ocurre con los sustratos de la PKA de mamíferos. El mejor sustrato tiene en la posición P+4 un residuo ácido, equivalente al que se encuentra en la secuencia inhibitoria de Bcy1, la subunidad regulatoria de la PKA de levaduras. Se analizó también el efecto del sustrato sobre la activación de la holoenzima y demostramos que tanto los sustratos peptídicos como las proteínas enteras sensibilizan en diferentes grados, dependiendo de sus secuencias, a la holoenzima para la activación por cAMP. Los resultados también sugieren que las proteínas enteras son mejores co-activadores que los péptidos. Se determinaron los catalitic turnover numbers de las isoformas Tpk1 y Tpk2, y ambas enzimas mostraron el mismo valor, 3 seg-1, diez veces menor que el valor determinado para las subunidades C de mamíferos. La compartimentalización de la señal del cAMP, otro punto de regulación de la especificidad, es mantenida por el agrupamiento de las enzimas de la vía de señalización en unidades discretas a través de las proteínas de anclaje de la proteína quinasa A (AKAPs), las cuales interactúan con la subunidad regulatoria de la holoenzima. Hasta el momento no habían sido identificadas proteínas de anclaje en levaduras. Definimos, utilizando abordajes in silico y bioquímicos de copurificación e identificación por espectrometría de masa, proteínas que hacen interacción con Bcy1, entre ellas: GTPase activating protein 2 (Ira2), Myosin2 (Myo2), Heat shock protein 60 (Hsp60) and Protein Tyrosine Phosphatase 1 (Ptp1). Utilizando arrays de péptidos se identificaron los residuos críticos para la interacción en las proteínas de anclaje. Los dominios definidos como claves de la interacción presentan una estructura posible de α-hélice con residuos cargados positivamente que son importantes para la interacción. Usando mutantes de deleción se definió que las proteínas estudiadas hacen interacción con la región N-terminal de Bcy1. Se verificó la interacción in vitro por ensayos de pull-down, e in vivo por inmunoprecipitación. También se demostró que Bcy1 e Ira2 localizan en la misma fracción subcelular y que péptidos derivados de Ira2 son fosforilados por las Tpks in vitro. Se analizó la relevancia fisiológica de la interacción entre Bcy1 y Hsp60 y se observó que la actividad quinasa de PKA disminuye en ausencia de la chaperona, indicando que la Hsp60 tendría una función estabilizadora sobre las Tpks y además que frente a un estrés térmico Bcy1, Tpk1 y Hsp60 aumentan su localización en la fracción mitocondrial, lo que permitiría modular el transporte de proteínas mitocondriales por fosforilación
Fil: Galello, Fiorella Ariadna. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
PKA
CAMP
SACCHAROMYCES CEREVISIAE
BCY1
SUSTRATOS
AKAPS
PKA
CAMP
SACCHAROMYCES CEREVISIAE
BCY1
SUBSTRATES
AKAPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n4985_Galello

id BDUBAFCEN_e3f9c785e9095f38e6e6a9e5cc819d78
oai_identifier_str tesis:tesis_n4985_Galello
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Mecanismo de activación de la proteína quinasa A dependiente de cAMP : proteínas sustrato y de anclaje de PKA de Saccharomyces cerevisiaeActivation mechanismGalello, Fiorella AriadnaPKACAMPSACCHAROMYCES CEREVISIAEBCY1SUSTRATOSAKAPSPKACAMPSACCHAROMYCES CEREVISIAEBCY1SUBSTRATESAKAPSLa especificidad en la vía de transducción de señales de cAMP-PKA está determinada por el reconocimiento de la secuencia blanco en el sustrato y por la localización de la quinasa en compartimentos subcelulares. En Saccharomyces cerevisiae los determinantes de la especificidad de la proteína quinasa A (PKA) están menos caracterizados que en mamíferos. Analizamos el comportamiento de los sustratos y los determinantes de secuencia alrededor del sitio de fosforilación de tres proteínas sustrato: Piruvato quinasa 1 (Pyk1), Piruvato quinasa 2 (Pyk2) y Trehalasa neutra (Nth1). La proteína Nth1 es mejor sustrato que la proteína Pyk1 y ambas son fosforiladas tanto por Tpk1 como por Tpk2, dos de las isoformas de la subunidad catalítica de la PKA de levaduras. Las tres proteínas contienen uno o más motivos consenso de PKA, Arg-Arg-X-Ser, pero no todos ellos son fosforilados. Análisis de esos sitios permitieron determinar que los residuos ácidos en la posición P+1 o en el extremo N-terminal son deletéreos para la reacción catalítica, mientras que los residuos positivos presentes más allá de las posiciones P-2 y P-3 la favorecen. Un residuo hidrofóbico voluminoso en posición P+1 no resulta crítico, a diferencia de lo que ocurre con los sustratos de la PKA de mamíferos. El mejor sustrato tiene en la posición P+4 un residuo ácido, equivalente al que se encuentra en la secuencia inhibitoria de Bcy1, la subunidad regulatoria de la PKA de levaduras. Se analizó también el efecto del sustrato sobre la activación de la holoenzima y demostramos que tanto los sustratos peptídicos como las proteínas enteras sensibilizan en diferentes grados, dependiendo de sus secuencias, a la holoenzima para la activación por cAMP. Los resultados también sugieren que las proteínas enteras son mejores co-activadores que los péptidos. Se determinaron los catalitic turnover numbers de las isoformas Tpk1 y Tpk2, y ambas enzimas mostraron el mismo valor, 3 seg-1, diez veces menor que el valor determinado para las subunidades C de mamíferos. La compartimentalización de la señal del cAMP, otro punto de regulación de la especificidad, es mantenida por el agrupamiento de las enzimas de la vía de señalización en unidades discretas a través de las proteínas de anclaje de la proteína quinasa A (AKAPs), las cuales interactúan con la subunidad regulatoria de la holoenzima. Hasta el momento no habían sido identificadas proteínas de anclaje en levaduras. Definimos, utilizando abordajes in silico y bioquímicos de copurificación e identificación por espectrometría de masa, proteínas que hacen interacción con Bcy1, entre ellas: GTPase activating protein 2 (Ira2), Myosin2 (Myo2), Heat shock protein 60 (Hsp60) and Protein Tyrosine Phosphatase 1 (Ptp1). Utilizando arrays de péptidos se identificaron los residuos críticos para la interacción en las proteínas de anclaje. Los dominios definidos como claves de la interacción presentan una estructura posible de α-hélice con residuos cargados positivamente que son importantes para la interacción. Usando mutantes de deleción se definió que las proteínas estudiadas hacen interacción con la región N-terminal de Bcy1. Se verificó la interacción in vitro por ensayos de pull-down, e in vivo por inmunoprecipitación. También se demostró que Bcy1 e Ira2 localizan en la misma fracción subcelular y que péptidos derivados de Ira2 son fosforilados por las Tpks in vitro. Se analizó la relevancia fisiológica de la interacción entre Bcy1 y Hsp60 y se observó que la actividad quinasa de PKA disminuye en ausencia de la chaperona, indicando que la Hsp60 tendría una función estabilizadora sobre las Tpks y además que frente a un estrés térmico Bcy1, Tpk1 y Hsp60 aumentan su localización en la fracción mitocondrial, lo que permitiría modular el transporte de proteínas mitocondriales por fosforilaciónFil: Galello, Fiorella Ariadna. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesRossi, Silvia Graciela2011info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n4985_Galellospainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-04T09:47:08Ztesis:tesis_n4985_GalelloInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:47:10.271Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Mecanismo de activación de la proteína quinasa A dependiente de cAMP : proteínas sustrato y de anclaje de PKA de Saccharomyces cerevisiae
Activation mechanism
title Mecanismo de activación de la proteína quinasa A dependiente de cAMP : proteínas sustrato y de anclaje de PKA de Saccharomyces cerevisiae
spellingShingle Mecanismo de activación de la proteína quinasa A dependiente de cAMP : proteínas sustrato y de anclaje de PKA de Saccharomyces cerevisiae
Galello, Fiorella Ariadna
PKA
CAMP
SACCHAROMYCES CEREVISIAE
BCY1
SUSTRATOS
AKAPS
PKA
CAMP
SACCHAROMYCES CEREVISIAE
BCY1
SUBSTRATES
AKAPS
title_short Mecanismo de activación de la proteína quinasa A dependiente de cAMP : proteínas sustrato y de anclaje de PKA de Saccharomyces cerevisiae
title_full Mecanismo de activación de la proteína quinasa A dependiente de cAMP : proteínas sustrato y de anclaje de PKA de Saccharomyces cerevisiae
title_fullStr Mecanismo de activación de la proteína quinasa A dependiente de cAMP : proteínas sustrato y de anclaje de PKA de Saccharomyces cerevisiae
title_full_unstemmed Mecanismo de activación de la proteína quinasa A dependiente de cAMP : proteínas sustrato y de anclaje de PKA de Saccharomyces cerevisiae
title_sort Mecanismo de activación de la proteína quinasa A dependiente de cAMP : proteínas sustrato y de anclaje de PKA de Saccharomyces cerevisiae
dc.creator.none.fl_str_mv Galello, Fiorella Ariadna
author Galello, Fiorella Ariadna
author_facet Galello, Fiorella Ariadna
author_role author
dc.contributor.none.fl_str_mv Rossi, Silvia Graciela
dc.subject.none.fl_str_mv PKA
CAMP
SACCHAROMYCES CEREVISIAE
BCY1
SUSTRATOS
AKAPS
PKA
CAMP
SACCHAROMYCES CEREVISIAE
BCY1
SUBSTRATES
AKAPS
topic PKA
CAMP
SACCHAROMYCES CEREVISIAE
BCY1
SUSTRATOS
AKAPS
PKA
CAMP
SACCHAROMYCES CEREVISIAE
BCY1
SUBSTRATES
AKAPS
dc.description.none.fl_txt_mv La especificidad en la vía de transducción de señales de cAMP-PKA está determinada por el reconocimiento de la secuencia blanco en el sustrato y por la localización de la quinasa en compartimentos subcelulares. En Saccharomyces cerevisiae los determinantes de la especificidad de la proteína quinasa A (PKA) están menos caracterizados que en mamíferos. Analizamos el comportamiento de los sustratos y los determinantes de secuencia alrededor del sitio de fosforilación de tres proteínas sustrato: Piruvato quinasa 1 (Pyk1), Piruvato quinasa 2 (Pyk2) y Trehalasa neutra (Nth1). La proteína Nth1 es mejor sustrato que la proteína Pyk1 y ambas son fosforiladas tanto por Tpk1 como por Tpk2, dos de las isoformas de la subunidad catalítica de la PKA de levaduras. Las tres proteínas contienen uno o más motivos consenso de PKA, Arg-Arg-X-Ser, pero no todos ellos son fosforilados. Análisis de esos sitios permitieron determinar que los residuos ácidos en la posición P+1 o en el extremo N-terminal son deletéreos para la reacción catalítica, mientras que los residuos positivos presentes más allá de las posiciones P-2 y P-3 la favorecen. Un residuo hidrofóbico voluminoso en posición P+1 no resulta crítico, a diferencia de lo que ocurre con los sustratos de la PKA de mamíferos. El mejor sustrato tiene en la posición P+4 un residuo ácido, equivalente al que se encuentra en la secuencia inhibitoria de Bcy1, la subunidad regulatoria de la PKA de levaduras. Se analizó también el efecto del sustrato sobre la activación de la holoenzima y demostramos que tanto los sustratos peptídicos como las proteínas enteras sensibilizan en diferentes grados, dependiendo de sus secuencias, a la holoenzima para la activación por cAMP. Los resultados también sugieren que las proteínas enteras son mejores co-activadores que los péptidos. Se determinaron los catalitic turnover numbers de las isoformas Tpk1 y Tpk2, y ambas enzimas mostraron el mismo valor, 3 seg-1, diez veces menor que el valor determinado para las subunidades C de mamíferos. La compartimentalización de la señal del cAMP, otro punto de regulación de la especificidad, es mantenida por el agrupamiento de las enzimas de la vía de señalización en unidades discretas a través de las proteínas de anclaje de la proteína quinasa A (AKAPs), las cuales interactúan con la subunidad regulatoria de la holoenzima. Hasta el momento no habían sido identificadas proteínas de anclaje en levaduras. Definimos, utilizando abordajes in silico y bioquímicos de copurificación e identificación por espectrometría de masa, proteínas que hacen interacción con Bcy1, entre ellas: GTPase activating protein 2 (Ira2), Myosin2 (Myo2), Heat shock protein 60 (Hsp60) and Protein Tyrosine Phosphatase 1 (Ptp1). Utilizando arrays de péptidos se identificaron los residuos críticos para la interacción en las proteínas de anclaje. Los dominios definidos como claves de la interacción presentan una estructura posible de α-hélice con residuos cargados positivamente que son importantes para la interacción. Usando mutantes de deleción se definió que las proteínas estudiadas hacen interacción con la región N-terminal de Bcy1. Se verificó la interacción in vitro por ensayos de pull-down, e in vivo por inmunoprecipitación. También se demostró que Bcy1 e Ira2 localizan en la misma fracción subcelular y que péptidos derivados de Ira2 son fosforilados por las Tpks in vitro. Se analizó la relevancia fisiológica de la interacción entre Bcy1 y Hsp60 y se observó que la actividad quinasa de PKA disminuye en ausencia de la chaperona, indicando que la Hsp60 tendría una función estabilizadora sobre las Tpks y además que frente a un estrés térmico Bcy1, Tpk1 y Hsp60 aumentan su localización en la fracción mitocondrial, lo que permitiría modular el transporte de proteínas mitocondriales por fosforilación
Fil: Galello, Fiorella Ariadna. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description La especificidad en la vía de transducción de señales de cAMP-PKA está determinada por el reconocimiento de la secuencia blanco en el sustrato y por la localización de la quinasa en compartimentos subcelulares. En Saccharomyces cerevisiae los determinantes de la especificidad de la proteína quinasa A (PKA) están menos caracterizados que en mamíferos. Analizamos el comportamiento de los sustratos y los determinantes de secuencia alrededor del sitio de fosforilación de tres proteínas sustrato: Piruvato quinasa 1 (Pyk1), Piruvato quinasa 2 (Pyk2) y Trehalasa neutra (Nth1). La proteína Nth1 es mejor sustrato que la proteína Pyk1 y ambas son fosforiladas tanto por Tpk1 como por Tpk2, dos de las isoformas de la subunidad catalítica de la PKA de levaduras. Las tres proteínas contienen uno o más motivos consenso de PKA, Arg-Arg-X-Ser, pero no todos ellos son fosforilados. Análisis de esos sitios permitieron determinar que los residuos ácidos en la posición P+1 o en el extremo N-terminal son deletéreos para la reacción catalítica, mientras que los residuos positivos presentes más allá de las posiciones P-2 y P-3 la favorecen. Un residuo hidrofóbico voluminoso en posición P+1 no resulta crítico, a diferencia de lo que ocurre con los sustratos de la PKA de mamíferos. El mejor sustrato tiene en la posición P+4 un residuo ácido, equivalente al que se encuentra en la secuencia inhibitoria de Bcy1, la subunidad regulatoria de la PKA de levaduras. Se analizó también el efecto del sustrato sobre la activación de la holoenzima y demostramos que tanto los sustratos peptídicos como las proteínas enteras sensibilizan en diferentes grados, dependiendo de sus secuencias, a la holoenzima para la activación por cAMP. Los resultados también sugieren que las proteínas enteras son mejores co-activadores que los péptidos. Se determinaron los catalitic turnover numbers de las isoformas Tpk1 y Tpk2, y ambas enzimas mostraron el mismo valor, 3 seg-1, diez veces menor que el valor determinado para las subunidades C de mamíferos. La compartimentalización de la señal del cAMP, otro punto de regulación de la especificidad, es mantenida por el agrupamiento de las enzimas de la vía de señalización en unidades discretas a través de las proteínas de anclaje de la proteína quinasa A (AKAPs), las cuales interactúan con la subunidad regulatoria de la holoenzima. Hasta el momento no habían sido identificadas proteínas de anclaje en levaduras. Definimos, utilizando abordajes in silico y bioquímicos de copurificación e identificación por espectrometría de masa, proteínas que hacen interacción con Bcy1, entre ellas: GTPase activating protein 2 (Ira2), Myosin2 (Myo2), Heat shock protein 60 (Hsp60) and Protein Tyrosine Phosphatase 1 (Ptp1). Utilizando arrays de péptidos se identificaron los residuos críticos para la interacción en las proteínas de anclaje. Los dominios definidos como claves de la interacción presentan una estructura posible de α-hélice con residuos cargados positivamente que son importantes para la interacción. Usando mutantes de deleción se definió que las proteínas estudiadas hacen interacción con la región N-terminal de Bcy1. Se verificó la interacción in vitro por ensayos de pull-down, e in vivo por inmunoprecipitación. También se demostró que Bcy1 e Ira2 localizan en la misma fracción subcelular y que péptidos derivados de Ira2 son fosforilados por las Tpks in vitro. Se analizó la relevancia fisiológica de la interacción entre Bcy1 y Hsp60 y se observó que la actividad quinasa de PKA disminuye en ausencia de la chaperona, indicando que la Hsp60 tendría una función estabilizadora sobre las Tpks y además que frente a un estrés térmico Bcy1, Tpk1 y Hsp60 aumentan su localización en la fracción mitocondrial, lo que permitiría modular el transporte de proteínas mitocondriales por fosforilación
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n4985_Galello
url https://hdl.handle.net/20.500.12110/tesis_n4985_Galello
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340685805518848
score 12.623145