On a variational principle for Beltrami flows

Autores
González, R.; Costa, A.; Santini, E.S.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In a previous paper [R. González, L. G. Sarasua, and A. Costa, "Kelvin waves with helical Beltrami flow structure," Phys. Fluids20, 024106 (2008)] we analyzed the formation of Kelvin waves with a Beltrami flow structure in an ideal fluid. Here, taking into account the results of this paper, the topological analogy between the role of the magnetic field in Woltjer's theorem [L. Woltjer, "A theorem on force-free magnetic fields," Proc. Natl. Acad. Sci. U.S.A.44, 489 (1958)] and the role of the vorticity in the equivalent theorem is revisited. Via this analogy we identify the force-free equilibrium of the magnetohydrodynamics with the Beltrami flow equilibrium of the hydrodynamic. The stability of the last one is studied applying Arnold's theorem. We analyze the role of the enstrophy in the determination of the equilibrium and its stability. We show examples where the Beltrami flow equilibrium is stable under perturbations of the Beltrami flow type with the same eigenvalue as the basic flow one. The enstrophy variation results invariant with respect to a uniform rotating and translational frame and the stability is conserved when the flow experiences a transition from a Beltrami axisymmetric flow to a helical one of the same eigenvalue. These results are discussed in comparison with that given by Moffatt in 1986 [H. K. Moffatt, "Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations," J. Fluid Mech.166, 359 (1986)]. © 2010 American Institute of Physics.
Fil:González, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Santini, E.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys. Fluids 2010;22(7):1-7
Materia
Arnold's theorem
Axisymmetric flow
Basic flow
Beltrami
Beltrami flow
Complex topology
Eigen-value
Enstrophy
Euler flows
Flow experience
Force-free magnetic fields
Ideal fluids
Kelvin waves
Variational principles
Eigenvalues and eigenfunctions
Flow structure
Gravity waves
Magnetic fields
Magnetohydrodynamics
Topology
Variational techniques
Stability
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_10706631_v22_n7_p1_Gonzalez

id BDUBAFCEN_c19f7113c063bbbf0289eb7a863f7a6f
oai_identifier_str paperaa:paper_10706631_v22_n7_p1_Gonzalez
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling On a variational principle for Beltrami flowsGonzález, R.Costa, A.Santini, E.S.Arnold's theoremAxisymmetric flowBasic flowBeltramiBeltrami flowComplex topologyEigen-valueEnstrophyEuler flowsFlow experienceForce-free magnetic fieldsIdeal fluidsKelvin wavesVariational principlesEigenvalues and eigenfunctionsFlow structureGravity wavesMagnetic fieldsMagnetohydrodynamicsTopologyVariational techniquesStabilityIn a previous paper [R. González, L. G. Sarasua, and A. Costa, "Kelvin waves with helical Beltrami flow structure," Phys. Fluids20, 024106 (2008)] we analyzed the formation of Kelvin waves with a Beltrami flow structure in an ideal fluid. Here, taking into account the results of this paper, the topological analogy between the role of the magnetic field in Woltjer's theorem [L. Woltjer, "A theorem on force-free magnetic fields," Proc. Natl. Acad. Sci. U.S.A.44, 489 (1958)] and the role of the vorticity in the equivalent theorem is revisited. Via this analogy we identify the force-free equilibrium of the magnetohydrodynamics with the Beltrami flow equilibrium of the hydrodynamic. The stability of the last one is studied applying Arnold's theorem. We analyze the role of the enstrophy in the determination of the equilibrium and its stability. We show examples where the Beltrami flow equilibrium is stable under perturbations of the Beltrami flow type with the same eigenvalue as the basic flow one. The enstrophy variation results invariant with respect to a uniform rotating and translational frame and the stability is conserved when the flow experiences a transition from a Beltrami axisymmetric flow to a helical one of the same eigenvalue. These results are discussed in comparison with that given by Moffatt in 1986 [H. K. Moffatt, "Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations," J. Fluid Mech.166, 359 (1986)]. © 2010 American Institute of Physics.Fil:González, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Santini, E.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10706631_v22_n7_p1_GonzalezPhys. Fluids 2010;22(7):1-7reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:20Zpaperaa:paper_10706631_v22_n7_p1_GonzalezInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:22.357Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv On a variational principle for Beltrami flows
title On a variational principle for Beltrami flows
spellingShingle On a variational principle for Beltrami flows
González, R.
Arnold's theorem
Axisymmetric flow
Basic flow
Beltrami
Beltrami flow
Complex topology
Eigen-value
Enstrophy
Euler flows
Flow experience
Force-free magnetic fields
Ideal fluids
Kelvin waves
Variational principles
Eigenvalues and eigenfunctions
Flow structure
Gravity waves
Magnetic fields
Magnetohydrodynamics
Topology
Variational techniques
Stability
title_short On a variational principle for Beltrami flows
title_full On a variational principle for Beltrami flows
title_fullStr On a variational principle for Beltrami flows
title_full_unstemmed On a variational principle for Beltrami flows
title_sort On a variational principle for Beltrami flows
dc.creator.none.fl_str_mv González, R.
Costa, A.
Santini, E.S.
author González, R.
author_facet González, R.
Costa, A.
Santini, E.S.
author_role author
author2 Costa, A.
Santini, E.S.
author2_role author
author
dc.subject.none.fl_str_mv Arnold's theorem
Axisymmetric flow
Basic flow
Beltrami
Beltrami flow
Complex topology
Eigen-value
Enstrophy
Euler flows
Flow experience
Force-free magnetic fields
Ideal fluids
Kelvin waves
Variational principles
Eigenvalues and eigenfunctions
Flow structure
Gravity waves
Magnetic fields
Magnetohydrodynamics
Topology
Variational techniques
Stability
topic Arnold's theorem
Axisymmetric flow
Basic flow
Beltrami
Beltrami flow
Complex topology
Eigen-value
Enstrophy
Euler flows
Flow experience
Force-free magnetic fields
Ideal fluids
Kelvin waves
Variational principles
Eigenvalues and eigenfunctions
Flow structure
Gravity waves
Magnetic fields
Magnetohydrodynamics
Topology
Variational techniques
Stability
dc.description.none.fl_txt_mv In a previous paper [R. González, L. G. Sarasua, and A. Costa, "Kelvin waves with helical Beltrami flow structure," Phys. Fluids20, 024106 (2008)] we analyzed the formation of Kelvin waves with a Beltrami flow structure in an ideal fluid. Here, taking into account the results of this paper, the topological analogy between the role of the magnetic field in Woltjer's theorem [L. Woltjer, "A theorem on force-free magnetic fields," Proc. Natl. Acad. Sci. U.S.A.44, 489 (1958)] and the role of the vorticity in the equivalent theorem is revisited. Via this analogy we identify the force-free equilibrium of the magnetohydrodynamics with the Beltrami flow equilibrium of the hydrodynamic. The stability of the last one is studied applying Arnold's theorem. We analyze the role of the enstrophy in the determination of the equilibrium and its stability. We show examples where the Beltrami flow equilibrium is stable under perturbations of the Beltrami flow type with the same eigenvalue as the basic flow one. The enstrophy variation results invariant with respect to a uniform rotating and translational frame and the stability is conserved when the flow experiences a transition from a Beltrami axisymmetric flow to a helical one of the same eigenvalue. These results are discussed in comparison with that given by Moffatt in 1986 [H. K. Moffatt, "Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations," J. Fluid Mech.166, 359 (1986)]. © 2010 American Institute of Physics.
Fil:González, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Santini, E.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In a previous paper [R. González, L. G. Sarasua, and A. Costa, "Kelvin waves with helical Beltrami flow structure," Phys. Fluids20, 024106 (2008)] we analyzed the formation of Kelvin waves with a Beltrami flow structure in an ideal fluid. Here, taking into account the results of this paper, the topological analogy between the role of the magnetic field in Woltjer's theorem [L. Woltjer, "A theorem on force-free magnetic fields," Proc. Natl. Acad. Sci. U.S.A.44, 489 (1958)] and the role of the vorticity in the equivalent theorem is revisited. Via this analogy we identify the force-free equilibrium of the magnetohydrodynamics with the Beltrami flow equilibrium of the hydrodynamic. The stability of the last one is studied applying Arnold's theorem. We analyze the role of the enstrophy in the determination of the equilibrium and its stability. We show examples where the Beltrami flow equilibrium is stable under perturbations of the Beltrami flow type with the same eigenvalue as the basic flow one. The enstrophy variation results invariant with respect to a uniform rotating and translational frame and the stability is conserved when the flow experiences a transition from a Beltrami axisymmetric flow to a helical one of the same eigenvalue. These results are discussed in comparison with that given by Moffatt in 1986 [H. K. Moffatt, "Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations," J. Fluid Mech.166, 359 (1986)]. © 2010 American Institute of Physics.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_10706631_v22_n7_p1_Gonzalez
url http://hdl.handle.net/20.500.12110/paper_10706631_v22_n7_p1_Gonzalez
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys. Fluids 2010;22(7):1-7
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340699874263040
score 12.623145