Problemas de ruteo de vehículos
- Autores
- Zabala, Paula Lorena
- Año de publicación
- 2006
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Lucena, Abilio
Méndez-Díaz, Isabel - Descripción
- El Problema del Repartidor, PR, consiste en encontrar un camino que recorra un conjunto de clientes, comenzando en un punto dado, minimizando la suma de los tiempos de espera de estos clientes. Este es un problema de optimización simple y natural, que puede ser encontrado en diversas situaciones de la vida real, dentro de la industria y en el sector de servicios. La gran cantidad de aplicaciones hacen que este problema no sóolo tenga interés teórico, sino también, una gran importancia práctica. PR pertenece a la clase de problemas NP-Difícil. Para estos problemas no se conoce un algoritmo que encuentre la solución en tiempo polinomial. La mayor parte de la literatura sobre el PR está dedicada al desarrollo de algoritmos aproximados y heurísticas y son pocos los algoritmos exactos propuestos. Como muchos de los problemas de Optimización Combinatoria, PR puede ser modelado mediante formulaciones de programación lineal entera o entera mixta. Los algoritmos Branch-and-Cut son la herramienta más efectiva que se conoce para resolver un modelo de programación lineal entera. Especialmente las implementaciones basadas en combinatoria poliedral han permitido incrementar el tamaño de las instancias resueltas. El objetivo de esta tesis es abordar la resolución del Problema del Repartidor utilizando modelos de programación lineal entera binaria. Con este fin, proponemos una nueva formulación para modelar este problema. Realizamos un estudio poliedral de la cápsula convexa de las soluciones factibles, encontrando varias familias de desigualdades válidas que, bajo ciertas condiciones, demostramos que definen facetas del poliedro. Es la primera vez que se realiza un estudio poliedral asociado al Problema del Repartidor. En base a estas familias de desigualdades válidas, desarrollamos e implementamos un algoritmo Branch-and-Cut.
The Traveling Deliveryman Problem, PR, is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. Applications of DMP frequently arise in delivery situations where some kind of fairness criteria (for the visiting of clients) must be enforced. PR is known to be NP-hard for arbitrary graphs. The practical importance of the problem makes neccesary to devise algorithms capable of solving, in acceptable computational times, medium to moderate instances arising in real-world applications. A lot of work has been spent in an attempt to develop efficient algorithms for the problem, mainly by using approximation algorithms and heuristic techniques to deal with large instances. Relatively few methods for solving the problem exactly can be found in the literature. Like most optimization problems on graphs, PR can be formulated as a linear integer programming problem. LP-based Branch-and-Cut algorithms are currently the most successfull tool to deal with these models computationally. However, the amount of research effort spent in attempts to solve PR by this method is not comparable with that devoted to other problems, like TSP or maximum stable set. In this thesis, we present a new integer programming formulation. We develop a polyhedral study of the polytope associated with the proposed model in order to derive families of facet-defining inequalities. Branch-and-Cut implementations that take advantage of the particular structure of the problem under consideration have proved to be the most successfull. In this sense, the use of cutting planes arising from a polyhedral study of the feasible solution set allowed many instances of hard combinatorial optimization problems to be solved to proven optimality for the first time. We develop a Branch-and-Cut algorithm based on our theoretical polyhedral results. We also take into account many others factors like preprocessing, search and branching strategies, lower and upper bounds and streghthening of the LP-relaxation.
Fil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- tesis:tesis_n3987_Zabala
Ver los metadatos del registro completo
| id |
BDUBAFCEN_bd3fb489687dd0469735d4edd6ff88ca |
|---|---|
| oai_identifier_str |
tesis:tesis_n3987_Zabala |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Problemas de ruteo de vehículosZabala, Paula LorenaEl Problema del Repartidor, PR, consiste en encontrar un camino que recorra un conjunto de clientes, comenzando en un punto dado, minimizando la suma de los tiempos de espera de estos clientes. Este es un problema de optimización simple y natural, que puede ser encontrado en diversas situaciones de la vida real, dentro de la industria y en el sector de servicios. La gran cantidad de aplicaciones hacen que este problema no sóolo tenga interés teórico, sino también, una gran importancia práctica. PR pertenece a la clase de problemas NP-Difícil. Para estos problemas no se conoce un algoritmo que encuentre la solución en tiempo polinomial. La mayor parte de la literatura sobre el PR está dedicada al desarrollo de algoritmos aproximados y heurísticas y son pocos los algoritmos exactos propuestos. Como muchos de los problemas de Optimización Combinatoria, PR puede ser modelado mediante formulaciones de programación lineal entera o entera mixta. Los algoritmos Branch-and-Cut son la herramienta más efectiva que se conoce para resolver un modelo de programación lineal entera. Especialmente las implementaciones basadas en combinatoria poliedral han permitido incrementar el tamaño de las instancias resueltas. El objetivo de esta tesis es abordar la resolución del Problema del Repartidor utilizando modelos de programación lineal entera binaria. Con este fin, proponemos una nueva formulación para modelar este problema. Realizamos un estudio poliedral de la cápsula convexa de las soluciones factibles, encontrando varias familias de desigualdades válidas que, bajo ciertas condiciones, demostramos que definen facetas del poliedro. Es la primera vez que se realiza un estudio poliedral asociado al Problema del Repartidor. En base a estas familias de desigualdades válidas, desarrollamos e implementamos un algoritmo Branch-and-Cut.The Traveling Deliveryman Problem, PR, is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. Applications of DMP frequently arise in delivery situations where some kind of fairness criteria (for the visiting of clients) must be enforced. PR is known to be NP-hard for arbitrary graphs. The practical importance of the problem makes neccesary to devise algorithms capable of solving, in acceptable computational times, medium to moderate instances arising in real-world applications. A lot of work has been spent in an attempt to develop efficient algorithms for the problem, mainly by using approximation algorithms and heuristic techniques to deal with large instances. Relatively few methods for solving the problem exactly can be found in the literature. Like most optimization problems on graphs, PR can be formulated as a linear integer programming problem. LP-based Branch-and-Cut algorithms are currently the most successfull tool to deal with these models computationally. However, the amount of research effort spent in attempts to solve PR by this method is not comparable with that devoted to other problems, like TSP or maximum stable set. In this thesis, we present a new integer programming formulation. We develop a polyhedral study of the polytope associated with the proposed model in order to derive families of facet-defining inequalities. Branch-and-Cut implementations that take advantage of the particular structure of the problem under consideration have proved to be the most successfull. In this sense, the use of cutting planes arising from a polyhedral study of the feasible solution set allowed many instances of hard combinatorial optimization problems to be solved to proven optimality for the first time. We develop a Branch-and-Cut algorithm based on our theoretical polyhedral results. We also take into account many others factors like preprocessing, search and branching strategies, lower and upper bounds and streghthening of the LP-relaxation.Fil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesLucena, AbilioMéndez-Díaz, Isabel2006info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n3987_Zabalaspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-10-23T11:16:17Ztesis:tesis_n3987_ZabalaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:16:18.789Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Problemas de ruteo de vehículos |
| title |
Problemas de ruteo de vehículos |
| spellingShingle |
Problemas de ruteo de vehículos Zabala, Paula Lorena |
| title_short |
Problemas de ruteo de vehículos |
| title_full |
Problemas de ruteo de vehículos |
| title_fullStr |
Problemas de ruteo de vehículos |
| title_full_unstemmed |
Problemas de ruteo de vehículos |
| title_sort |
Problemas de ruteo de vehículos |
| dc.creator.none.fl_str_mv |
Zabala, Paula Lorena |
| author |
Zabala, Paula Lorena |
| author_facet |
Zabala, Paula Lorena |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Lucena, Abilio Méndez-Díaz, Isabel |
| dc.description.none.fl_txt_mv |
El Problema del Repartidor, PR, consiste en encontrar un camino que recorra un conjunto de clientes, comenzando en un punto dado, minimizando la suma de los tiempos de espera de estos clientes. Este es un problema de optimización simple y natural, que puede ser encontrado en diversas situaciones de la vida real, dentro de la industria y en el sector de servicios. La gran cantidad de aplicaciones hacen que este problema no sóolo tenga interés teórico, sino también, una gran importancia práctica. PR pertenece a la clase de problemas NP-Difícil. Para estos problemas no se conoce un algoritmo que encuentre la solución en tiempo polinomial. La mayor parte de la literatura sobre el PR está dedicada al desarrollo de algoritmos aproximados y heurísticas y son pocos los algoritmos exactos propuestos. Como muchos de los problemas de Optimización Combinatoria, PR puede ser modelado mediante formulaciones de programación lineal entera o entera mixta. Los algoritmos Branch-and-Cut son la herramienta más efectiva que se conoce para resolver un modelo de programación lineal entera. Especialmente las implementaciones basadas en combinatoria poliedral han permitido incrementar el tamaño de las instancias resueltas. El objetivo de esta tesis es abordar la resolución del Problema del Repartidor utilizando modelos de programación lineal entera binaria. Con este fin, proponemos una nueva formulación para modelar este problema. Realizamos un estudio poliedral de la cápsula convexa de las soluciones factibles, encontrando varias familias de desigualdades válidas que, bajo ciertas condiciones, demostramos que definen facetas del poliedro. Es la primera vez que se realiza un estudio poliedral asociado al Problema del Repartidor. En base a estas familias de desigualdades válidas, desarrollamos e implementamos un algoritmo Branch-and-Cut. The Traveling Deliveryman Problem, PR, is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. Applications of DMP frequently arise in delivery situations where some kind of fairness criteria (for the visiting of clients) must be enforced. PR is known to be NP-hard for arbitrary graphs. The practical importance of the problem makes neccesary to devise algorithms capable of solving, in acceptable computational times, medium to moderate instances arising in real-world applications. A lot of work has been spent in an attempt to develop efficient algorithms for the problem, mainly by using approximation algorithms and heuristic techniques to deal with large instances. Relatively few methods for solving the problem exactly can be found in the literature. Like most optimization problems on graphs, PR can be formulated as a linear integer programming problem. LP-based Branch-and-Cut algorithms are currently the most successfull tool to deal with these models computationally. However, the amount of research effort spent in attempts to solve PR by this method is not comparable with that devoted to other problems, like TSP or maximum stable set. In this thesis, we present a new integer programming formulation. We develop a polyhedral study of the polytope associated with the proposed model in order to derive families of facet-defining inequalities. Branch-and-Cut implementations that take advantage of the particular structure of the problem under consideration have proved to be the most successfull. In this sense, the use of cutting planes arising from a polyhedral study of the feasible solution set allowed many instances of hard combinatorial optimization problems to be solved to proven optimality for the first time. We develop a Branch-and-Cut algorithm based on our theoretical polyhedral results. We also take into account many others factors like preprocessing, search and branching strategies, lower and upper bounds and streghthening of the LP-relaxation. Fil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
El Problema del Repartidor, PR, consiste en encontrar un camino que recorra un conjunto de clientes, comenzando en un punto dado, minimizando la suma de los tiempos de espera de estos clientes. Este es un problema de optimización simple y natural, que puede ser encontrado en diversas situaciones de la vida real, dentro de la industria y en el sector de servicios. La gran cantidad de aplicaciones hacen que este problema no sóolo tenga interés teórico, sino también, una gran importancia práctica. PR pertenece a la clase de problemas NP-Difícil. Para estos problemas no se conoce un algoritmo que encuentre la solución en tiempo polinomial. La mayor parte de la literatura sobre el PR está dedicada al desarrollo de algoritmos aproximados y heurísticas y son pocos los algoritmos exactos propuestos. Como muchos de los problemas de Optimización Combinatoria, PR puede ser modelado mediante formulaciones de programación lineal entera o entera mixta. Los algoritmos Branch-and-Cut son la herramienta más efectiva que se conoce para resolver un modelo de programación lineal entera. Especialmente las implementaciones basadas en combinatoria poliedral han permitido incrementar el tamaño de las instancias resueltas. El objetivo de esta tesis es abordar la resolución del Problema del Repartidor utilizando modelos de programación lineal entera binaria. Con este fin, proponemos una nueva formulación para modelar este problema. Realizamos un estudio poliedral de la cápsula convexa de las soluciones factibles, encontrando varias familias de desigualdades válidas que, bajo ciertas condiciones, demostramos que definen facetas del poliedro. Es la primera vez que se realiza un estudio poliedral asociado al Problema del Repartidor. En base a estas familias de desigualdades válidas, desarrollamos e implementamos un algoritmo Branch-and-Cut. |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/tesis_n3987_Zabala |
| url |
https://hdl.handle.net/20.500.12110/tesis_n3987_Zabala |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846784838215925761 |
| score |
12.982451 |