Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode

Autores
De Leon, P.F.J.; Albano, E.V.; Salvarezza, R.C.; Solari, H.G.
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An atomistic model for Cu electrodeposition under nonequilibrium conditions is presented. Cu electrodeposition takes place with a height-dependent deposition rate that accounts for fluctuations in the local [formula presented] ions concentration at the interface, followed by surface diffusion. This model leads to an unstable interface with the development of protrusions and grooves. Subsequently the model is extended to account for the presence of organic additives, which compete with [formula presented] for adsorption at protrusions, leading to a stable interface with scaling exponents consistent with those of the Edwards-Wilkinson equation. The model reproduces the interface evolution experimentally observed for Cu electrodeposition in the absence and in the presence of organic additives. © 2002 The American Physical Society.
Fil:Solari, H.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys Rev E. 2002;66(4):4
Materia
Additives
Chemical vapor deposition
Computer simulation
Copper
Diffusion
Electrodeposition
Interfaces (materials)
Ions
Mass transfer
Mathematical models
Monolayers
Probability
Surface roughness
Atomistic model
Edwards-Wilkinson equation
Energy barriers
Growth dynamics
Surface chemistry
article
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_1063651X_v66_n4_p4_DeLeon

id BDUBAFCEN_b8b0c8ce1f2e65c235ef11bff6b023a2
oai_identifier_str paperaa:paper_1063651X_v66_n4_p4_DeLeon
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Interface dynamics for copper electrodeposition: The role of organic additives in the growth modeDe Leon, P.F.J.Albano, E.V.Salvarezza, R.C.Solari, H.G.AdditivesChemical vapor depositionComputer simulationCopperDiffusionElectrodepositionInterfaces (materials)IonsMass transferMathematical modelsMonolayersProbabilitySurface roughnessAtomistic modelEdwards-Wilkinson equationEnergy barriersGrowth dynamicsSurface chemistryarticleAn atomistic model for Cu electrodeposition under nonequilibrium conditions is presented. Cu electrodeposition takes place with a height-dependent deposition rate that accounts for fluctuations in the local [formula presented] ions concentration at the interface, followed by surface diffusion. This model leads to an unstable interface with the development of protrusions and grooves. Subsequently the model is extended to account for the presence of organic additives, which compete with [formula presented] for adsorption at protrusions, leading to a stable interface with scaling exponents consistent with those of the Edwards-Wilkinson equation. The model reproduces the interface evolution experimentally observed for Cu electrodeposition in the absence and in the presence of organic additives. © 2002 The American Physical Society.Fil:Solari, H.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_1063651X_v66_n4_p4_DeLeonPhys Rev E. 2002;66(4):4reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:49Zpaperaa:paper_1063651X_v66_n4_p4_DeLeonInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.464Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
title Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
spellingShingle Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
De Leon, P.F.J.
Additives
Chemical vapor deposition
Computer simulation
Copper
Diffusion
Electrodeposition
Interfaces (materials)
Ions
Mass transfer
Mathematical models
Monolayers
Probability
Surface roughness
Atomistic model
Edwards-Wilkinson equation
Energy barriers
Growth dynamics
Surface chemistry
article
title_short Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
title_full Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
title_fullStr Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
title_full_unstemmed Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
title_sort Interface dynamics for copper electrodeposition: The role of organic additives in the growth mode
dc.creator.none.fl_str_mv De Leon, P.F.J.
Albano, E.V.
Salvarezza, R.C.
Solari, H.G.
author De Leon, P.F.J.
author_facet De Leon, P.F.J.
Albano, E.V.
Salvarezza, R.C.
Solari, H.G.
author_role author
author2 Albano, E.V.
Salvarezza, R.C.
Solari, H.G.
author2_role author
author
author
dc.subject.none.fl_str_mv Additives
Chemical vapor deposition
Computer simulation
Copper
Diffusion
Electrodeposition
Interfaces (materials)
Ions
Mass transfer
Mathematical models
Monolayers
Probability
Surface roughness
Atomistic model
Edwards-Wilkinson equation
Energy barriers
Growth dynamics
Surface chemistry
article
topic Additives
Chemical vapor deposition
Computer simulation
Copper
Diffusion
Electrodeposition
Interfaces (materials)
Ions
Mass transfer
Mathematical models
Monolayers
Probability
Surface roughness
Atomistic model
Edwards-Wilkinson equation
Energy barriers
Growth dynamics
Surface chemistry
article
dc.description.none.fl_txt_mv An atomistic model for Cu electrodeposition under nonequilibrium conditions is presented. Cu electrodeposition takes place with a height-dependent deposition rate that accounts for fluctuations in the local [formula presented] ions concentration at the interface, followed by surface diffusion. This model leads to an unstable interface with the development of protrusions and grooves. Subsequently the model is extended to account for the presence of organic additives, which compete with [formula presented] for adsorption at protrusions, leading to a stable interface with scaling exponents consistent with those of the Edwards-Wilkinson equation. The model reproduces the interface evolution experimentally observed for Cu electrodeposition in the absence and in the presence of organic additives. © 2002 The American Physical Society.
Fil:Solari, H.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description An atomistic model for Cu electrodeposition under nonequilibrium conditions is presented. Cu electrodeposition takes place with a height-dependent deposition rate that accounts for fluctuations in the local [formula presented] ions concentration at the interface, followed by surface diffusion. This model leads to an unstable interface with the development of protrusions and grooves. Subsequently the model is extended to account for the presence of organic additives, which compete with [formula presented] for adsorption at protrusions, leading to a stable interface with scaling exponents consistent with those of the Edwards-Wilkinson equation. The model reproduces the interface evolution experimentally observed for Cu electrodeposition in the absence and in the presence of organic additives. © 2002 The American Physical Society.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n4_p4_DeLeon
url http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n4_p4_DeLeon
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys Rev E. 2002;66(4):4
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618732786155520
score 12.891075