11β-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: Specific inhibition by 11α-hydroxyprogesterone
- Autores
- Morita, H.; Zhou, M.; Foecking, M.F.; Gomez-Sanchez, E.P.; Cozza, E.N.; Gomez-Sanchez, C.E.
- Año de publicación
- 1996
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The 11β-hydroxysteroid dehydrogenase type 2 (11βHSD-2) enzyme is thought to confer aldosterone specificity upon mineralocorticoid target tissues by protecting the mineralocorticoid receptor from binding by the more abundant glucocorticoids, corticosterone and cortisol. We have developed a Chinese hamster ovary cell line stably transfected with a plasmid containing the rat 11βHSD-2 complementary DNA. This cell line has expressed the enzyme consistently for many generations. The 11βHSD-2 was located primarily in the microsomes, but significant amounts also existed in the nuclei and mitochondria. The enzymatic reaction was unidirectional, oxidative, and inhibited by the product, 11-dehydrocorticosterone, with an IC50 of approximately 200 nM. The K(m) for corticosterone was 9.6 ± 3.1 nM, and that for NAD+ was approximately 8 μM. The enzyme did not convert dexamethasone to 11-dehydrodexamethasone. Tunicamycin, an N-glycosylation inhibitor, had no effect on enzyme activity, 11α-Hydroxyprogesterone (11αOH-P) was an order of magnitude more potent a competitive inhibitor of the 11βHSD-2 than was glycyrrhetinic acid (GA) (approximate IC50 0.9 vs. 15 nM). 11βOH-P, progesterone, and GA were almost equipotent (IC50 = 10 and 6 nM, respectively), and 5α-pregnandione and 5β-pregnandione were less potent (IC50 = 100 and 500 nM, respectively) inhibitors of the enzyme. When the inhibitory activities were examined with intact transfected cells, 11αOH-P was more potent than GA (IC50 = 5 and 150 nM, respectively). 11αOH-P was not metabolized by 11βHSD-2. We were unable to demonstrate the presence of 11αOH-P in human urine. In conclusion, a cell line stably transfected with the rat 11βHSD-2 was created, and the enzyme kinetics, including inhibition, were characterized. 11αOH-P was found to be a potent relatively specific inhibitor of the 11βHSD-2 enzyme. Its potential importance is that it is the most specific inhibitor of the 11βHSD-2 so far encountered and would aid in the study of the physiological importance of the isoenzyme.
Fil:Cozza, E.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- ENDOCRINOLOGY 1996;137(6):2308-2314
- Materia
-
11alpha hydroxyprogesterone
11beta hydroxysteroid dehydrogenase
animal cell
article
Chinese hamster
competitive inhibition
enzyme activity
enzyme inhibition
enzyme kinetics
genetic complementation
genetic transfection
glycosylation
nonhuman
potassium excretion
priority journal
sodium retention - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00137227_v137_n6_p2308_Morita
Ver los metadatos del registro completo
id |
BDUBAFCEN_b5e963b395bce0c34c74e8e5b5a0f4e7 |
---|---|
oai_identifier_str |
paperaa:paper_00137227_v137_n6_p2308_Morita |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
11β-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: Specific inhibition by 11α-hydroxyprogesteroneMorita, H.Zhou, M.Foecking, M.F.Gomez-Sanchez, E.P.Cozza, E.N.Gomez-Sanchez, C.E.11alpha hydroxyprogesterone11beta hydroxysteroid dehydrogenaseanimal cellarticleChinese hamstercompetitive inhibitionenzyme activityenzyme inhibitionenzyme kineticsgenetic complementationgenetic transfectionglycosylationnonhumanpotassium excretionpriority journalsodium retentionThe 11β-hydroxysteroid dehydrogenase type 2 (11βHSD-2) enzyme is thought to confer aldosterone specificity upon mineralocorticoid target tissues by protecting the mineralocorticoid receptor from binding by the more abundant glucocorticoids, corticosterone and cortisol. We have developed a Chinese hamster ovary cell line stably transfected with a plasmid containing the rat 11βHSD-2 complementary DNA. This cell line has expressed the enzyme consistently for many generations. The 11βHSD-2 was located primarily in the microsomes, but significant amounts also existed in the nuclei and mitochondria. The enzymatic reaction was unidirectional, oxidative, and inhibited by the product, 11-dehydrocorticosterone, with an IC50 of approximately 200 nM. The K(m) for corticosterone was 9.6 ± 3.1 nM, and that for NAD+ was approximately 8 μM. The enzyme did not convert dexamethasone to 11-dehydrodexamethasone. Tunicamycin, an N-glycosylation inhibitor, had no effect on enzyme activity, 11α-Hydroxyprogesterone (11αOH-P) was an order of magnitude more potent a competitive inhibitor of the 11βHSD-2 than was glycyrrhetinic acid (GA) (approximate IC50 0.9 vs. 15 nM). 11βOH-P, progesterone, and GA were almost equipotent (IC50 = 10 and 6 nM, respectively), and 5α-pregnandione and 5β-pregnandione were less potent (IC50 = 100 and 500 nM, respectively) inhibitors of the enzyme. When the inhibitory activities were examined with intact transfected cells, 11αOH-P was more potent than GA (IC50 = 5 and 150 nM, respectively). 11αOH-P was not metabolized by 11βHSD-2. We were unable to demonstrate the presence of 11αOH-P in human urine. In conclusion, a cell line stably transfected with the rat 11βHSD-2 was created, and the enzyme kinetics, including inhibition, were characterized. 11αOH-P was found to be a potent relatively specific inhibitor of the 11βHSD-2 enzyme. Its potential importance is that it is the most specific inhibitor of the 11βHSD-2 so far encountered and would aid in the study of the physiological importance of the isoenzyme.Fil:Cozza, E.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.1996info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00137227_v137_n6_p2308_MoritaENDOCRINOLOGY 1996;137(6):2308-2314reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:40Zpaperaa:paper_00137227_v137_n6_p2308_MoritaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:42.705Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
11β-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: Specific inhibition by 11α-hydroxyprogesterone |
title |
11β-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: Specific inhibition by 11α-hydroxyprogesterone |
spellingShingle |
11β-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: Specific inhibition by 11α-hydroxyprogesterone Morita, H. 11alpha hydroxyprogesterone 11beta hydroxysteroid dehydrogenase animal cell article Chinese hamster competitive inhibition enzyme activity enzyme inhibition enzyme kinetics genetic complementation genetic transfection glycosylation nonhuman potassium excretion priority journal sodium retention |
title_short |
11β-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: Specific inhibition by 11α-hydroxyprogesterone |
title_full |
11β-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: Specific inhibition by 11α-hydroxyprogesterone |
title_fullStr |
11β-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: Specific inhibition by 11α-hydroxyprogesterone |
title_full_unstemmed |
11β-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: Specific inhibition by 11α-hydroxyprogesterone |
title_sort |
11β-Hydroxysteroid dehydrogenase type 2 complementary deoxyribonucleic acid stably transfected into Chinese hamster ovary cells: Specific inhibition by 11α-hydroxyprogesterone |
dc.creator.none.fl_str_mv |
Morita, H. Zhou, M. Foecking, M.F. Gomez-Sanchez, E.P. Cozza, E.N. Gomez-Sanchez, C.E. |
author |
Morita, H. |
author_facet |
Morita, H. Zhou, M. Foecking, M.F. Gomez-Sanchez, E.P. Cozza, E.N. Gomez-Sanchez, C.E. |
author_role |
author |
author2 |
Zhou, M. Foecking, M.F. Gomez-Sanchez, E.P. Cozza, E.N. Gomez-Sanchez, C.E. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
11alpha hydroxyprogesterone 11beta hydroxysteroid dehydrogenase animal cell article Chinese hamster competitive inhibition enzyme activity enzyme inhibition enzyme kinetics genetic complementation genetic transfection glycosylation nonhuman potassium excretion priority journal sodium retention |
topic |
11alpha hydroxyprogesterone 11beta hydroxysteroid dehydrogenase animal cell article Chinese hamster competitive inhibition enzyme activity enzyme inhibition enzyme kinetics genetic complementation genetic transfection glycosylation nonhuman potassium excretion priority journal sodium retention |
dc.description.none.fl_txt_mv |
The 11β-hydroxysteroid dehydrogenase type 2 (11βHSD-2) enzyme is thought to confer aldosterone specificity upon mineralocorticoid target tissues by protecting the mineralocorticoid receptor from binding by the more abundant glucocorticoids, corticosterone and cortisol. We have developed a Chinese hamster ovary cell line stably transfected with a plasmid containing the rat 11βHSD-2 complementary DNA. This cell line has expressed the enzyme consistently for many generations. The 11βHSD-2 was located primarily in the microsomes, but significant amounts also existed in the nuclei and mitochondria. The enzymatic reaction was unidirectional, oxidative, and inhibited by the product, 11-dehydrocorticosterone, with an IC50 of approximately 200 nM. The K(m) for corticosterone was 9.6 ± 3.1 nM, and that for NAD+ was approximately 8 μM. The enzyme did not convert dexamethasone to 11-dehydrodexamethasone. Tunicamycin, an N-glycosylation inhibitor, had no effect on enzyme activity, 11α-Hydroxyprogesterone (11αOH-P) was an order of magnitude more potent a competitive inhibitor of the 11βHSD-2 than was glycyrrhetinic acid (GA) (approximate IC50 0.9 vs. 15 nM). 11βOH-P, progesterone, and GA were almost equipotent (IC50 = 10 and 6 nM, respectively), and 5α-pregnandione and 5β-pregnandione were less potent (IC50 = 100 and 500 nM, respectively) inhibitors of the enzyme. When the inhibitory activities were examined with intact transfected cells, 11αOH-P was more potent than GA (IC50 = 5 and 150 nM, respectively). 11αOH-P was not metabolized by 11βHSD-2. We were unable to demonstrate the presence of 11αOH-P in human urine. In conclusion, a cell line stably transfected with the rat 11βHSD-2 was created, and the enzyme kinetics, including inhibition, were characterized. 11αOH-P was found to be a potent relatively specific inhibitor of the 11βHSD-2 enzyme. Its potential importance is that it is the most specific inhibitor of the 11βHSD-2 so far encountered and would aid in the study of the physiological importance of the isoenzyme. Fil:Cozza, E.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
The 11β-hydroxysteroid dehydrogenase type 2 (11βHSD-2) enzyme is thought to confer aldosterone specificity upon mineralocorticoid target tissues by protecting the mineralocorticoid receptor from binding by the more abundant glucocorticoids, corticosterone and cortisol. We have developed a Chinese hamster ovary cell line stably transfected with a plasmid containing the rat 11βHSD-2 complementary DNA. This cell line has expressed the enzyme consistently for many generations. The 11βHSD-2 was located primarily in the microsomes, but significant amounts also existed in the nuclei and mitochondria. The enzymatic reaction was unidirectional, oxidative, and inhibited by the product, 11-dehydrocorticosterone, with an IC50 of approximately 200 nM. The K(m) for corticosterone was 9.6 ± 3.1 nM, and that for NAD+ was approximately 8 μM. The enzyme did not convert dexamethasone to 11-dehydrodexamethasone. Tunicamycin, an N-glycosylation inhibitor, had no effect on enzyme activity, 11α-Hydroxyprogesterone (11αOH-P) was an order of magnitude more potent a competitive inhibitor of the 11βHSD-2 than was glycyrrhetinic acid (GA) (approximate IC50 0.9 vs. 15 nM). 11βOH-P, progesterone, and GA were almost equipotent (IC50 = 10 and 6 nM, respectively), and 5α-pregnandione and 5β-pregnandione were less potent (IC50 = 100 and 500 nM, respectively) inhibitors of the enzyme. When the inhibitory activities were examined with intact transfected cells, 11αOH-P was more potent than GA (IC50 = 5 and 150 nM, respectively). 11αOH-P was not metabolized by 11βHSD-2. We were unable to demonstrate the presence of 11αOH-P in human urine. In conclusion, a cell line stably transfected with the rat 11βHSD-2 was created, and the enzyme kinetics, including inhibition, were characterized. 11αOH-P was found to be a potent relatively specific inhibitor of the 11βHSD-2 enzyme. Its potential importance is that it is the most specific inhibitor of the 11βHSD-2 so far encountered and would aid in the study of the physiological importance of the isoenzyme. |
publishDate |
1996 |
dc.date.none.fl_str_mv |
1996 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00137227_v137_n6_p2308_Morita |
url |
http://hdl.handle.net/20.500.12110/paper_00137227_v137_n6_p2308_Morita |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
ENDOCRINOLOGY 1996;137(6):2308-2314 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340706035695616 |
score |
12.623145 |