Classical molecular-dynamics simulation of the hydroxyl radical in water
- Autores
- Campo, M.G.; Grigera, J.R.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We have studied the hydration and diffusion of the hydroxyl radical O H0 in water using classical molecular dynamics. We report the atomic radial distribution functions, hydrogen-bond distributions, angular distribution functions, and lifetimes of the hydration structures. The most frequent hydration structure in the O H0 has one water molecule bound to the O H0 oxygen (57% of the time), and one water molecule bound to the O H0 hydrogen (88% of the time). In the hydrogen bonds between the O H0 and the water that surrounds it the O H0 acts mainly as proton donor. These hydrogen bonds take place in a low percentage, indicating little adaptability of the molecule to the structure of the solvent. All hydration structures of the O H0 have shorter lifetimes than those corresponding to the hydration structures of the water molecule. The value of the diffusion coefficient of the O H0 obtained from the simulation was 7.1× 10-9 m2 s-1, which is higher than those of the water and the O H-. © 2005 American Institute of Physics.
- Fuente
- J Chem Phys 2005;123(8)
- Materia
-
Angular distribution functions
Atomic radial distribution functions
Hydroxyl radicals
Water molecules
Computer simulation
Diffusion
Hydrogen bonds
Molecular dynamics
Solvents
Water
Free radicals - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00219606_v123_n8_p_Campo
Ver los metadatos del registro completo
id |
BDUBAFCEN_a362a0d7b464b6fd1f6440ce7126d812 |
---|---|
oai_identifier_str |
paperaa:paper_00219606_v123_n8_p_Campo |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Classical molecular-dynamics simulation of the hydroxyl radical in waterCampo, M.G.Grigera, J.R.Angular distribution functionsAtomic radial distribution functionsHydroxyl radicalsWater moleculesComputer simulationDiffusionHydrogen bondsMolecular dynamicsSolventsWaterFree radicalsWe have studied the hydration and diffusion of the hydroxyl radical O H0 in water using classical molecular dynamics. We report the atomic radial distribution functions, hydrogen-bond distributions, angular distribution functions, and lifetimes of the hydration structures. The most frequent hydration structure in the O H0 has one water molecule bound to the O H0 oxygen (57% of the time), and one water molecule bound to the O H0 hydrogen (88% of the time). In the hydrogen bonds between the O H0 and the water that surrounds it the O H0 acts mainly as proton donor. These hydrogen bonds take place in a low percentage, indicating little adaptability of the molecule to the structure of the solvent. All hydration structures of the O H0 have shorter lifetimes than those corresponding to the hydration structures of the water molecule. The value of the diffusion coefficient of the O H0 obtained from the simulation was 7.1× 10-9 m2 s-1, which is higher than those of the water and the O H-. © 2005 American Institute of Physics.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00219606_v123_n8_p_CampoJ Chem Phys 2005;123(8)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:05Zpaperaa:paper_00219606_v123_n8_p_CampoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.087Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Classical molecular-dynamics simulation of the hydroxyl radical in water |
title |
Classical molecular-dynamics simulation of the hydroxyl radical in water |
spellingShingle |
Classical molecular-dynamics simulation of the hydroxyl radical in water Campo, M.G. Angular distribution functions Atomic radial distribution functions Hydroxyl radicals Water molecules Computer simulation Diffusion Hydrogen bonds Molecular dynamics Solvents Water Free radicals |
title_short |
Classical molecular-dynamics simulation of the hydroxyl radical in water |
title_full |
Classical molecular-dynamics simulation of the hydroxyl radical in water |
title_fullStr |
Classical molecular-dynamics simulation of the hydroxyl radical in water |
title_full_unstemmed |
Classical molecular-dynamics simulation of the hydroxyl radical in water |
title_sort |
Classical molecular-dynamics simulation of the hydroxyl radical in water |
dc.creator.none.fl_str_mv |
Campo, M.G. Grigera, J.R. |
author |
Campo, M.G. |
author_facet |
Campo, M.G. Grigera, J.R. |
author_role |
author |
author2 |
Grigera, J.R. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Angular distribution functions Atomic radial distribution functions Hydroxyl radicals Water molecules Computer simulation Diffusion Hydrogen bonds Molecular dynamics Solvents Water Free radicals |
topic |
Angular distribution functions Atomic radial distribution functions Hydroxyl radicals Water molecules Computer simulation Diffusion Hydrogen bonds Molecular dynamics Solvents Water Free radicals |
dc.description.none.fl_txt_mv |
We have studied the hydration and diffusion of the hydroxyl radical O H0 in water using classical molecular dynamics. We report the atomic radial distribution functions, hydrogen-bond distributions, angular distribution functions, and lifetimes of the hydration structures. The most frequent hydration structure in the O H0 has one water molecule bound to the O H0 oxygen (57% of the time), and one water molecule bound to the O H0 hydrogen (88% of the time). In the hydrogen bonds between the O H0 and the water that surrounds it the O H0 acts mainly as proton donor. These hydrogen bonds take place in a low percentage, indicating little adaptability of the molecule to the structure of the solvent. All hydration structures of the O H0 have shorter lifetimes than those corresponding to the hydration structures of the water molecule. The value of the diffusion coefficient of the O H0 obtained from the simulation was 7.1× 10-9 m2 s-1, which is higher than those of the water and the O H-. © 2005 American Institute of Physics. |
description |
We have studied the hydration and diffusion of the hydroxyl radical O H0 in water using classical molecular dynamics. We report the atomic radial distribution functions, hydrogen-bond distributions, angular distribution functions, and lifetimes of the hydration structures. The most frequent hydration structure in the O H0 has one water molecule bound to the O H0 oxygen (57% of the time), and one water molecule bound to the O H0 hydrogen (88% of the time). In the hydrogen bonds between the O H0 and the water that surrounds it the O H0 acts mainly as proton donor. These hydrogen bonds take place in a low percentage, indicating little adaptability of the molecule to the structure of the solvent. All hydration structures of the O H0 have shorter lifetimes than those corresponding to the hydration structures of the water molecule. The value of the diffusion coefficient of the O H0 obtained from the simulation was 7.1× 10-9 m2 s-1, which is higher than those of the water and the O H-. © 2005 American Institute of Physics. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00219606_v123_n8_p_Campo |
url |
http://hdl.handle.net/20.500.12110/paper_00219606_v123_n8_p_Campo |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J Chem Phys 2005;123(8) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739097534464 |
score |
13.070432 |