Renormalization group and nonequilibrium action in stochastic field theory

Autores
Zanella, J.; Calzetta, E.
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society.
Fil:Calzetta, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys Rev E. 2002;66(3)
Materia
Anisotropy
Cameras
Charge coupled devices
Electric conductivity
Electric field effects
Electric potential
Electrodes
Electrolysis
Isotropic instability
Optical stripes
Polymer spacers
Williams domain (WD)
Nematic liquid crystals
article
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_1063651X_v66_n3_p_Zanella

id BDUBAFCEN_9d9269a9ead0d6b723cb7d826c936b67
oai_identifier_str paperaa:paper_1063651X_v66_n3_p_Zanella
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Renormalization group and nonequilibrium action in stochastic field theoryZanella, J.Calzetta, E.AnisotropyCamerasCharge coupled devicesElectric conductivityElectric field effectsElectric potentialElectrodesElectrolysisIsotropic instabilityOptical stripesPolymer spacersWilliams domain (WD)Nematic liquid crystalsarticleWe investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society.Fil:Calzetta, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_ZanellaPhys Rev E. 2002;66(3)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:01Zpaperaa:paper_1063651X_v66_n3_p_ZanellaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:02.041Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Renormalization group and nonequilibrium action in stochastic field theory
title Renormalization group and nonequilibrium action in stochastic field theory
spellingShingle Renormalization group and nonequilibrium action in stochastic field theory
Zanella, J.
Anisotropy
Cameras
Charge coupled devices
Electric conductivity
Electric field effects
Electric potential
Electrodes
Electrolysis
Isotropic instability
Optical stripes
Polymer spacers
Williams domain (WD)
Nematic liquid crystals
article
title_short Renormalization group and nonequilibrium action in stochastic field theory
title_full Renormalization group and nonequilibrium action in stochastic field theory
title_fullStr Renormalization group and nonequilibrium action in stochastic field theory
title_full_unstemmed Renormalization group and nonequilibrium action in stochastic field theory
title_sort Renormalization group and nonequilibrium action in stochastic field theory
dc.creator.none.fl_str_mv Zanella, J.
Calzetta, E.
author Zanella, J.
author_facet Zanella, J.
Calzetta, E.
author_role author
author2 Calzetta, E.
author2_role author
dc.subject.none.fl_str_mv Anisotropy
Cameras
Charge coupled devices
Electric conductivity
Electric field effects
Electric potential
Electrodes
Electrolysis
Isotropic instability
Optical stripes
Polymer spacers
Williams domain (WD)
Nematic liquid crystals
article
topic Anisotropy
Cameras
Charge coupled devices
Electric conductivity
Electric field effects
Electric potential
Electrodes
Electrolysis
Isotropic instability
Optical stripes
Polymer spacers
Williams domain (WD)
Nematic liquid crystals
article
dc.description.none.fl_txt_mv We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society.
Fil:Calzetta, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_Zanella
url http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_Zanella
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys Rev E. 2002;66(3)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618737720754176
score 12.891075