Renormalization group and nonequilibrium action in stochastic field theory
- Autores
- Zanella, J.; Calzetta, E.
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society.
Fil:Calzetta, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Phys Rev E. 2002;66(3)
- Materia
-
Anisotropy
Cameras
Charge coupled devices
Electric conductivity
Electric field effects
Electric potential
Electrodes
Electrolysis
Isotropic instability
Optical stripes
Polymer spacers
Williams domain (WD)
Nematic liquid crystals
article - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_1063651X_v66_n3_p_Zanella
Ver los metadatos del registro completo
id |
BDUBAFCEN_9d9269a9ead0d6b723cb7d826c936b67 |
---|---|
oai_identifier_str |
paperaa:paper_1063651X_v66_n3_p_Zanella |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Renormalization group and nonequilibrium action in stochastic field theoryZanella, J.Calzetta, E.AnisotropyCamerasCharge coupled devicesElectric conductivityElectric field effectsElectric potentialElectrodesElectrolysisIsotropic instabilityOptical stripesPolymer spacersWilliams domain (WD)Nematic liquid crystalsarticleWe investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society.Fil:Calzetta, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_ZanellaPhys Rev E. 2002;66(3)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:01Zpaperaa:paper_1063651X_v66_n3_p_ZanellaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:02.041Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Renormalization group and nonequilibrium action in stochastic field theory |
title |
Renormalization group and nonequilibrium action in stochastic field theory |
spellingShingle |
Renormalization group and nonequilibrium action in stochastic field theory Zanella, J. Anisotropy Cameras Charge coupled devices Electric conductivity Electric field effects Electric potential Electrodes Electrolysis Isotropic instability Optical stripes Polymer spacers Williams domain (WD) Nematic liquid crystals article |
title_short |
Renormalization group and nonequilibrium action in stochastic field theory |
title_full |
Renormalization group and nonequilibrium action in stochastic field theory |
title_fullStr |
Renormalization group and nonequilibrium action in stochastic field theory |
title_full_unstemmed |
Renormalization group and nonequilibrium action in stochastic field theory |
title_sort |
Renormalization group and nonequilibrium action in stochastic field theory |
dc.creator.none.fl_str_mv |
Zanella, J. Calzetta, E. |
author |
Zanella, J. |
author_facet |
Zanella, J. Calzetta, E. |
author_role |
author |
author2 |
Calzetta, E. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Anisotropy Cameras Charge coupled devices Electric conductivity Electric field effects Electric potential Electrodes Electrolysis Isotropic instability Optical stripes Polymer spacers Williams domain (WD) Nematic liquid crystals article |
topic |
Anisotropy Cameras Charge coupled devices Electric conductivity Electric field effects Electric potential Electrodes Electrolysis Isotropic instability Optical stripes Polymer spacers Williams domain (WD) Nematic liquid crystals article |
dc.description.none.fl_txt_mv |
We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society. Fil:Calzetta, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion. © 2002 The American Physical Society. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_Zanella |
url |
http://hdl.handle.net/20.500.12110/paper_1063651X_v66_n3_p_Zanella |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Phys Rev E. 2002;66(3) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618737720754176 |
score |
12.891075 |