Bubble Formation in Pulsed Electric Field Technology May Pose Limitations

Autores
Rodriguez Osuna, Isaac Aaron; Cobelli, Pablo Javier; Olaiz, Nahuel Manuel
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Currently, increasing amounts of pulsed electric fields (PEF) are employed to improve a person’s life quality. This technology is based on the application of the shortest high voltage electrical pulse, which generates an increment over the cell membrane permeability. When applying these pulses, an unwanted effect is electrolysis, which could alter the treatment. This work focused on the study of the local variations of the electric field and current density around the bubbles formed by the electrolysis of water by PEF technology and how these variations alter the electroporation protocol. The assays, in the present work, were carried out at 2 KV/cm, 1.2 KV/cm and 0.6 KV/cm in water, adjusting the conductivity with NaCl at 2365 μs/cm with a single pulse of 800 μs. The measurements of the bubble diameter variations due to electrolysis as a function of time allowed us to develop an experimental model of the behavior of the bubble diameter vs. time, which was used for simulation purposes. In the in silico model, we calculated that the electric field and observed an increment of current density around the bubble can be up to four times the base value due to the edge effect around it, while the thermal effects were undesirable due to the short duration of the pulses (variations of ±0.1 °C are undesirable). This research revealed that the rise of electric current is not just because of the shift in electrical conductivity due to chemical and thermal effects, but also varies with the bubble coverage over the electrode surface and variations in the local electric field by edge effect. All these variations can conduce to unwanted limitations over PEF treatment. In the future, we recommend tests on the variation of local current conductivity and electric fields.
Fil: Rodriguez Osuna, Isaac Aaron. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Cobelli, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Olaiz, Nahuel Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
CURRENT DENSITY
ELECTRIC FIELD
ELECTRODE COVERAGE
ELECTROPORATION PROTOCOLS
PULSE ELECTRIC FIELD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/213814

id CONICETDig_2aebd1c5ec4240af17cc7e4cc0649844
oai_identifier_str oai:ri.conicet.gov.ar:11336/213814
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bubble Formation in Pulsed Electric Field Technology May Pose LimitationsRodriguez Osuna, Isaac AaronCobelli, Pablo JavierOlaiz, Nahuel ManuelCURRENT DENSITYELECTRIC FIELDELECTRODE COVERAGEELECTROPORATION PROTOCOLSPULSE ELECTRIC FIELDhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Currently, increasing amounts of pulsed electric fields (PEF) are employed to improve a person’s life quality. This technology is based on the application of the shortest high voltage electrical pulse, which generates an increment over the cell membrane permeability. When applying these pulses, an unwanted effect is electrolysis, which could alter the treatment. This work focused on the study of the local variations of the electric field and current density around the bubbles formed by the electrolysis of water by PEF technology and how these variations alter the electroporation protocol. The assays, in the present work, were carried out at 2 KV/cm, 1.2 KV/cm and 0.6 KV/cm in water, adjusting the conductivity with NaCl at 2365 μs/cm with a single pulse of 800 μs. The measurements of the bubble diameter variations due to electrolysis as a function of time allowed us to develop an experimental model of the behavior of the bubble diameter vs. time, which was used for simulation purposes. In the in silico model, we calculated that the electric field and observed an increment of current density around the bubble can be up to four times the base value due to the edge effect around it, while the thermal effects were undesirable due to the short duration of the pulses (variations of ±0.1 °C are undesirable). This research revealed that the rise of electric current is not just because of the shift in electrical conductivity due to chemical and thermal effects, but also varies with the bubble coverage over the electrode surface and variations in the local electric field by edge effect. All these variations can conduce to unwanted limitations over PEF treatment. In the future, we recommend tests on the variation of local current conductivity and electric fields.Fil: Rodriguez Osuna, Isaac Aaron. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Cobelli, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Olaiz, Nahuel Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaMDPI2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213814Rodriguez Osuna, Isaac Aaron; Cobelli, Pablo Javier; Olaiz, Nahuel Manuel; Bubble Formation in Pulsed Electric Field Technology May Pose Limitations; MDPI; Micromachines; 13; 8; 8-2022; 1-102072-666XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/mi13081234info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:31Zoai:ri.conicet.gov.ar:11336/213814instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:31.583CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bubble Formation in Pulsed Electric Field Technology May Pose Limitations
title Bubble Formation in Pulsed Electric Field Technology May Pose Limitations
spellingShingle Bubble Formation in Pulsed Electric Field Technology May Pose Limitations
Rodriguez Osuna, Isaac Aaron
CURRENT DENSITY
ELECTRIC FIELD
ELECTRODE COVERAGE
ELECTROPORATION PROTOCOLS
PULSE ELECTRIC FIELD
title_short Bubble Formation in Pulsed Electric Field Technology May Pose Limitations
title_full Bubble Formation in Pulsed Electric Field Technology May Pose Limitations
title_fullStr Bubble Formation in Pulsed Electric Field Technology May Pose Limitations
title_full_unstemmed Bubble Formation in Pulsed Electric Field Technology May Pose Limitations
title_sort Bubble Formation in Pulsed Electric Field Technology May Pose Limitations
dc.creator.none.fl_str_mv Rodriguez Osuna, Isaac Aaron
Cobelli, Pablo Javier
Olaiz, Nahuel Manuel
author Rodriguez Osuna, Isaac Aaron
author_facet Rodriguez Osuna, Isaac Aaron
Cobelli, Pablo Javier
Olaiz, Nahuel Manuel
author_role author
author2 Cobelli, Pablo Javier
Olaiz, Nahuel Manuel
author2_role author
author
dc.subject.none.fl_str_mv CURRENT DENSITY
ELECTRIC FIELD
ELECTRODE COVERAGE
ELECTROPORATION PROTOCOLS
PULSE ELECTRIC FIELD
topic CURRENT DENSITY
ELECTRIC FIELD
ELECTRODE COVERAGE
ELECTROPORATION PROTOCOLS
PULSE ELECTRIC FIELD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Currently, increasing amounts of pulsed electric fields (PEF) are employed to improve a person’s life quality. This technology is based on the application of the shortest high voltage electrical pulse, which generates an increment over the cell membrane permeability. When applying these pulses, an unwanted effect is electrolysis, which could alter the treatment. This work focused on the study of the local variations of the electric field and current density around the bubbles formed by the electrolysis of water by PEF technology and how these variations alter the electroporation protocol. The assays, in the present work, were carried out at 2 KV/cm, 1.2 KV/cm and 0.6 KV/cm in water, adjusting the conductivity with NaCl at 2365 μs/cm with a single pulse of 800 μs. The measurements of the bubble diameter variations due to electrolysis as a function of time allowed us to develop an experimental model of the behavior of the bubble diameter vs. time, which was used for simulation purposes. In the in silico model, we calculated that the electric field and observed an increment of current density around the bubble can be up to four times the base value due to the edge effect around it, while the thermal effects were undesirable due to the short duration of the pulses (variations of ±0.1 °C are undesirable). This research revealed that the rise of electric current is not just because of the shift in electrical conductivity due to chemical and thermal effects, but also varies with the bubble coverage over the electrode surface and variations in the local electric field by edge effect. All these variations can conduce to unwanted limitations over PEF treatment. In the future, we recommend tests on the variation of local current conductivity and electric fields.
Fil: Rodriguez Osuna, Isaac Aaron. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Cobelli, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Olaiz, Nahuel Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description Currently, increasing amounts of pulsed electric fields (PEF) are employed to improve a person’s life quality. This technology is based on the application of the shortest high voltage electrical pulse, which generates an increment over the cell membrane permeability. When applying these pulses, an unwanted effect is electrolysis, which could alter the treatment. This work focused on the study of the local variations of the electric field and current density around the bubbles formed by the electrolysis of water by PEF technology and how these variations alter the electroporation protocol. The assays, in the present work, were carried out at 2 KV/cm, 1.2 KV/cm and 0.6 KV/cm in water, adjusting the conductivity with NaCl at 2365 μs/cm with a single pulse of 800 μs. The measurements of the bubble diameter variations due to electrolysis as a function of time allowed us to develop an experimental model of the behavior of the bubble diameter vs. time, which was used for simulation purposes. In the in silico model, we calculated that the electric field and observed an increment of current density around the bubble can be up to four times the base value due to the edge effect around it, while the thermal effects were undesirable due to the short duration of the pulses (variations of ±0.1 °C are undesirable). This research revealed that the rise of electric current is not just because of the shift in electrical conductivity due to chemical and thermal effects, but also varies with the bubble coverage over the electrode surface and variations in the local electric field by edge effect. All these variations can conduce to unwanted limitations over PEF treatment. In the future, we recommend tests on the variation of local current conductivity and electric fields.
publishDate 2022
dc.date.none.fl_str_mv 2022-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/213814
Rodriguez Osuna, Isaac Aaron; Cobelli, Pablo Javier; Olaiz, Nahuel Manuel; Bubble Formation in Pulsed Electric Field Technology May Pose Limitations; MDPI; Micromachines; 13; 8; 8-2022; 1-10
2072-666X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/213814
identifier_str_mv Rodriguez Osuna, Isaac Aaron; Cobelli, Pablo Javier; Olaiz, Nahuel Manuel; Bubble Formation in Pulsed Electric Field Technology May Pose Limitations; MDPI; Micromachines; 13; 8; 8-2022; 1-10
2072-666X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/mi13081234
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268864637829120
score 13.13397