Hochschild (Co)homology of differential operators rings

Autores
Guccione, J.A.; Guccione, J.J.
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem for these algebras. When A = k our complex reduces to the one obtained by C. Kassel (1988, Invent. Math. 91, 221-251) for the homology of filtrated algebras whose associated graded algebras are symmetric algebras. In the last section we give similar results for the cohomology. © 2001 Academic Press.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Algebra 2001;243(2):596-614
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00218693_v243_n2_p596_Guccione

id BDUBAFCEN_9d229e7b203673864d4cf6061b9b1ce5
oai_identifier_str paperaa:paper_00218693_v243_n2_p596_Guccione
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Hochschild (Co)homology of differential operators ringsGuccione, J.A.Guccione, J.J.We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem for these algebras. When A = k our complex reduces to the one obtained by C. Kassel (1988, Invent. Math. 91, 221-251) for the homology of filtrated algebras whose associated graded algebras are symmetric algebras. In the last section we give similar results for the cohomology. © 2001 Academic Press.Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v243_n2_p596_GuccioneJ. Algebra 2001;243(2):596-614reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_00218693_v243_n2_p596_GuccioneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.911Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Hochschild (Co)homology of differential operators rings
title Hochschild (Co)homology of differential operators rings
spellingShingle Hochschild (Co)homology of differential operators rings
Guccione, J.A.
title_short Hochschild (Co)homology of differential operators rings
title_full Hochschild (Co)homology of differential operators rings
title_fullStr Hochschild (Co)homology of differential operators rings
title_full_unstemmed Hochschild (Co)homology of differential operators rings
title_sort Hochschild (Co)homology of differential operators rings
dc.creator.none.fl_str_mv Guccione, J.A.
Guccione, J.J.
author Guccione, J.A.
author_facet Guccione, J.A.
Guccione, J.J.
author_role author
author2 Guccione, J.J.
author2_role author
dc.description.none.fl_txt_mv We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem for these algebras. When A = k our complex reduces to the one obtained by C. Kassel (1988, Invent. Math. 91, 221-251) for the homology of filtrated algebras whose associated graded algebras are symmetric algebras. In the last section we give similar results for the cohomology. © 2001 Academic Press.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem for these algebras. When A = k our complex reduces to the one obtained by C. Kassel (1988, Invent. Math. 91, 221-251) for the homology of filtrated algebras whose associated graded algebras are symmetric algebras. In the last section we give similar results for the cohomology. © 2001 Academic Press.
publishDate 2001
dc.date.none.fl_str_mv 2001
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00218693_v243_n2_p596_Guccione
url http://hdl.handle.net/20.500.12110/paper_00218693_v243_n2_p596_Guccione
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Algebra 2001;243(2):596-614
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618740907376640
score 13.070432