Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes

Autores
Serra, F.; Becher, V.; Dopazo, H.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "species" of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or "species" populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. © 2013 Serra et al.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Dopazo, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
PLoS ONE 2013;8(6)
Materia
article
chromosome size
chromosome structure
community dynamics
eukaryote
genetic element
genetic variability
genome
metagenomics
neutral gene theory
nonhuman
population abundance
relative species abundance
species diversity
transposon
Algorithms
Animals
Chromosomes
Genetic Variation
Genome
Humans
Likelihood Functions
Models, Genetic
Stochastic Processes
Eukaryota
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_19326203_v8_n6_p_Serra

id BDUBAFCEN_8af2bbba700e6ee579483e20995c04c5
oai_identifier_str paperaa:paper_19326203_v8_n6_p_Serra
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic GenomesSerra, F.Becher, V.Dopazo, H.articlechromosome sizechromosome structurecommunity dynamicseukaryotegenetic elementgenetic variabilitygenomemetagenomicsneutral gene theorynonhumanpopulation abundancerelative species abundancespecies diversitytransposonAlgorithmsAnimalsChromosomesGenetic VariationGenomeHumansLikelihood FunctionsModels, GeneticStochastic ProcessesEukaryotaIt is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "species" of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or "species" populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. © 2013 Serra et al.Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dopazo, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_19326203_v8_n6_p_SerraPLoS ONE 2013;8(6)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:13Zpaperaa:paper_19326203_v8_n6_p_SerraInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:14.891Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes
title Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes
spellingShingle Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes
Serra, F.
article
chromosome size
chromosome structure
community dynamics
eukaryote
genetic element
genetic variability
genome
metagenomics
neutral gene theory
nonhuman
population abundance
relative species abundance
species diversity
transposon
Algorithms
Animals
Chromosomes
Genetic Variation
Genome
Humans
Likelihood Functions
Models, Genetic
Stochastic Processes
Eukaryota
title_short Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes
title_full Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes
title_fullStr Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes
title_full_unstemmed Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes
title_sort Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes
dc.creator.none.fl_str_mv Serra, F.
Becher, V.
Dopazo, H.
author Serra, F.
author_facet Serra, F.
Becher, V.
Dopazo, H.
author_role author
author2 Becher, V.
Dopazo, H.
author2_role author
author
dc.subject.none.fl_str_mv article
chromosome size
chromosome structure
community dynamics
eukaryote
genetic element
genetic variability
genome
metagenomics
neutral gene theory
nonhuman
population abundance
relative species abundance
species diversity
transposon
Algorithms
Animals
Chromosomes
Genetic Variation
Genome
Humans
Likelihood Functions
Models, Genetic
Stochastic Processes
Eukaryota
topic article
chromosome size
chromosome structure
community dynamics
eukaryote
genetic element
genetic variability
genome
metagenomics
neutral gene theory
nonhuman
population abundance
relative species abundance
species diversity
transposon
Algorithms
Animals
Chromosomes
Genetic Variation
Genome
Humans
Likelihood Functions
Models, Genetic
Stochastic Processes
Eukaryota
dc.description.none.fl_txt_mv It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "species" of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or "species" populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. © 2013 Serra et al.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Dopazo, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "species" of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or "species" populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. © 2013 Serra et al.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_19326203_v8_n6_p_Serra
url http://hdl.handle.net/20.500.12110/paper_19326203_v8_n6_p_Serra
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv PLoS ONE 2013;8(6)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846142847786418176
score 12.712165