Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes
- Autores
- Serra, F.; Becher, V.; Dopazo, H.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "species" of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or "species" populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. © 2013 Serra et al.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Dopazo, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- PLoS ONE 2013;8(6)
- Materia
-
article
chromosome size
chromosome structure
community dynamics
eukaryote
genetic element
genetic variability
genome
metagenomics
neutral gene theory
nonhuman
population abundance
relative species abundance
species diversity
transposon
Algorithms
Animals
Chromosomes
Genetic Variation
Genome
Humans
Likelihood Functions
Models, Genetic
Stochastic Processes
Eukaryota - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_19326203_v8_n6_p_Serra
Ver los metadatos del registro completo
id |
BDUBAFCEN_8af2bbba700e6ee579483e20995c04c5 |
---|---|
oai_identifier_str |
paperaa:paper_19326203_v8_n6_p_Serra |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic GenomesSerra, F.Becher, V.Dopazo, H.articlechromosome sizechromosome structurecommunity dynamicseukaryotegenetic elementgenetic variabilitygenomemetagenomicsneutral gene theorynonhumanpopulation abundancerelative species abundancespecies diversitytransposonAlgorithmsAnimalsChromosomesGenetic VariationGenomeHumansLikelihood FunctionsModels, GeneticStochastic ProcessesEukaryotaIt is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "species" of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or "species" populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. © 2013 Serra et al.Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dopazo, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_19326203_v8_n6_p_SerraPLoS ONE 2013;8(6)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:13Zpaperaa:paper_19326203_v8_n6_p_SerraInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:14.891Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes |
title |
Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes |
spellingShingle |
Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes Serra, F. article chromosome size chromosome structure community dynamics eukaryote genetic element genetic variability genome metagenomics neutral gene theory nonhuman population abundance relative species abundance species diversity transposon Algorithms Animals Chromosomes Genetic Variation Genome Humans Likelihood Functions Models, Genetic Stochastic Processes Eukaryota |
title_short |
Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes |
title_full |
Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes |
title_fullStr |
Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes |
title_full_unstemmed |
Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes |
title_sort |
Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes |
dc.creator.none.fl_str_mv |
Serra, F. Becher, V. Dopazo, H. |
author |
Serra, F. |
author_facet |
Serra, F. Becher, V. Dopazo, H. |
author_role |
author |
author2 |
Becher, V. Dopazo, H. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
article chromosome size chromosome structure community dynamics eukaryote genetic element genetic variability genome metagenomics neutral gene theory nonhuman population abundance relative species abundance species diversity transposon Algorithms Animals Chromosomes Genetic Variation Genome Humans Likelihood Functions Models, Genetic Stochastic Processes Eukaryota |
topic |
article chromosome size chromosome structure community dynamics eukaryote genetic element genetic variability genome metagenomics neutral gene theory nonhuman population abundance relative species abundance species diversity transposon Algorithms Animals Chromosomes Genetic Variation Genome Humans Likelihood Functions Models, Genetic Stochastic Processes Eukaryota |
dc.description.none.fl_txt_mv |
It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "species" of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or "species" populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. © 2013 Serra et al. Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dopazo, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "species" of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or "species" populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. © 2013 Serra et al. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_19326203_v8_n6_p_Serra |
url |
http://hdl.handle.net/20.500.12110/paper_19326203_v8_n6_p_Serra |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
PLoS ONE 2013;8(6) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142847786418176 |
score |
12.712165 |