Renormalization in theories with modified dispersion relations: Weak gravitational fields

Autores
López Nacir, D.; Mazzitelli, F.D.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider a free quantum scalar field satisfying modified dispersion relations in curved spacetimes, within the framework of Einstein-Aether theory. Using a power counting analysis, we study the divergences in the adiabatic expansion of 〈 φ{symbol}2 〉 and 〈 Tμ ν 〉, working in the weak field approximation. We show that for dispersion relations containing up to 2s powers of the spatial momentum, the subtraction necessary to renormalize these two quantities on general backgrounds depends on s in a qualitatively different way: while 〈 φ{symbol}2 〉 becomes convergent for a sufficiently large value of s, the number of divergent terms in the adiabatic expansion of 〈 Tμ ν 〉 increases with s. This property was not apparent in previous results for spatially homogeneous backgrounds. © 2009 Elsevier B.V. All rights reserved.
Fil:López Nacir, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys Lett Sect B Nucl Elem Part High-Energy Phys 2009;672(3):294-298
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_03702693_v672_n3_p294_LopezNacir

id BDUBAFCEN_6af770bd95f172b1ce4b9095b57ee816
oai_identifier_str paperaa:paper_03702693_v672_n3_p294_LopezNacir
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Renormalization in theories with modified dispersion relations: Weak gravitational fieldsLópez Nacir, D.Mazzitelli, F.D.We consider a free quantum scalar field satisfying modified dispersion relations in curved spacetimes, within the framework of Einstein-Aether theory. Using a power counting analysis, we study the divergences in the adiabatic expansion of 〈 φ{symbol}2 〉 and 〈 Tμ ν 〉, working in the weak field approximation. We show that for dispersion relations containing up to 2s powers of the spatial momentum, the subtraction necessary to renormalize these two quantities on general backgrounds depends on s in a qualitatively different way: while 〈 φ{symbol}2 〉 becomes convergent for a sufficiently large value of s, the number of divergent terms in the adiabatic expansion of 〈 Tμ ν 〉 increases with s. This property was not apparent in previous results for spatially homogeneous backgrounds. © 2009 Elsevier B.V. All rights reserved.Fil:López Nacir, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03702693_v672_n3_p294_LopezNacirPhys Lett Sect B Nucl Elem Part High-Energy Phys 2009;672(3):294-298reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_03702693_v672_n3_p294_LopezNacirInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.404Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Renormalization in theories with modified dispersion relations: Weak gravitational fields
title Renormalization in theories with modified dispersion relations: Weak gravitational fields
spellingShingle Renormalization in theories with modified dispersion relations: Weak gravitational fields
López Nacir, D.
title_short Renormalization in theories with modified dispersion relations: Weak gravitational fields
title_full Renormalization in theories with modified dispersion relations: Weak gravitational fields
title_fullStr Renormalization in theories with modified dispersion relations: Weak gravitational fields
title_full_unstemmed Renormalization in theories with modified dispersion relations: Weak gravitational fields
title_sort Renormalization in theories with modified dispersion relations: Weak gravitational fields
dc.creator.none.fl_str_mv López Nacir, D.
Mazzitelli, F.D.
author López Nacir, D.
author_facet López Nacir, D.
Mazzitelli, F.D.
author_role author
author2 Mazzitelli, F.D.
author2_role author
dc.description.none.fl_txt_mv We consider a free quantum scalar field satisfying modified dispersion relations in curved spacetimes, within the framework of Einstein-Aether theory. Using a power counting analysis, we study the divergences in the adiabatic expansion of 〈 φ{symbol}2 〉 and 〈 Tμ ν 〉, working in the weak field approximation. We show that for dispersion relations containing up to 2s powers of the spatial momentum, the subtraction necessary to renormalize these two quantities on general backgrounds depends on s in a qualitatively different way: while 〈 φ{symbol}2 〉 becomes convergent for a sufficiently large value of s, the number of divergent terms in the adiabatic expansion of 〈 Tμ ν 〉 increases with s. This property was not apparent in previous results for spatially homogeneous backgrounds. © 2009 Elsevier B.V. All rights reserved.
Fil:López Nacir, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mazzitelli, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We consider a free quantum scalar field satisfying modified dispersion relations in curved spacetimes, within the framework of Einstein-Aether theory. Using a power counting analysis, we study the divergences in the adiabatic expansion of 〈 φ{symbol}2 〉 and 〈 Tμ ν 〉, working in the weak field approximation. We show that for dispersion relations containing up to 2s powers of the spatial momentum, the subtraction necessary to renormalize these two quantities on general backgrounds depends on s in a qualitatively different way: while 〈 φ{symbol}2 〉 becomes convergent for a sufficiently large value of s, the number of divergent terms in the adiabatic expansion of 〈 Tμ ν 〉 increases with s. This property was not apparent in previous results for spatially homogeneous backgrounds. © 2009 Elsevier B.V. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_03702693_v672_n3_p294_LopezNacir
url http://hdl.handle.net/20.500.12110/paper_03702693_v672_n3_p294_LopezNacir
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys Lett Sect B Nucl Elem Part High-Energy Phys 2009;672(3):294-298
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618739501236224
score 13.070432