Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
- Autores
- Bruno, L.; Salierno, M.; Wetzler, D.E.; Despósito, M.A.; Levi, V.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al.
Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Salierno, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wetzler, D.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Levi, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- PLoS ONE 2011;6(4)
- Materia
-
dynactin
dynein adenosine triphosphatase
kinesin
molecular motor
dynactin
microtubule associated protein
molecular motor
animal cell
article
cell organelle
cell tracking
controlled study
gene dosage
in vitro study
melanosome
microtubule
molecular dynamics
nonhuman
protein function
protein interaction
protein stiffness
protein transport
quantitative analysis
viscoelasticity
Xenopus laevis
animal
biological model
biomechanics
cell survival
elasticity
mechanics
melanosome
metabolism
microtubule
viscosity
Animals
Biomechanics
Cell Survival
Elasticity
Mechanical Processes
Melanosomes
Microtubule-Associated Proteins
Microtubules
Models, Biological
Molecular Motor Proteins
Protein Transport
Viscosity
Xenopus laevis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_19326203_v6_n4_p_Bruno
Ver los metadatos del registro completo
id |
BDUBAFCEN_508e5a3570c70a8d1ffb611675032269 |
---|---|
oai_identifier_str |
paperaa:paper_19326203_v6_n4_p_Bruno |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cellsBruno, L.Salierno, M.Wetzler, D.E.Despósito, M.A.Levi, V.dynactindynein adenosine triphosphatasekinesinmolecular motordynactinmicrotubule associated proteinmolecular motoranimal cellarticlecell organellecell trackingcontrolled studygene dosagein vitro studymelanosomemicrotubulemolecular dynamicsnonhumanprotein functionprotein interactionprotein stiffnessprotein transportquantitative analysisviscoelasticityXenopus laevisanimalbiological modelbiomechanicscell survivalelasticitymechanicsmelanosomemetabolismmicrotubuleviscosityAnimalsBiomechanicsCell SurvivalElasticityMechanical ProcessesMelanosomesMicrotubule-Associated ProteinsMicrotubulesModels, BiologicalMolecular Motor ProteinsProtein TransportViscosityXenopus laevisThe organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al.Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Salierno, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Wetzler, D.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Levi, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_19326203_v6_n4_p_BrunoPLoS ONE 2011;6(4)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:49Zpaperaa:paper_19326203_v6_n4_p_BrunoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.485Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells |
title |
Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells |
spellingShingle |
Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells Bruno, L. dynactin dynein adenosine triphosphatase kinesin molecular motor dynactin microtubule associated protein molecular motor animal cell article cell organelle cell tracking controlled study gene dosage in vitro study melanosome microtubule molecular dynamics nonhuman protein function protein interaction protein stiffness protein transport quantitative analysis viscoelasticity Xenopus laevis animal biological model biomechanics cell survival elasticity mechanics melanosome metabolism microtubule viscosity Animals Biomechanics Cell Survival Elasticity Mechanical Processes Melanosomes Microtubule-Associated Proteins Microtubules Models, Biological Molecular Motor Proteins Protein Transport Viscosity Xenopus laevis |
title_short |
Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells |
title_full |
Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells |
title_fullStr |
Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells |
title_full_unstemmed |
Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells |
title_sort |
Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells |
dc.creator.none.fl_str_mv |
Bruno, L. Salierno, M. Wetzler, D.E. Despósito, M.A. Levi, V. |
author |
Bruno, L. |
author_facet |
Bruno, L. Salierno, M. Wetzler, D.E. Despósito, M.A. Levi, V. |
author_role |
author |
author2 |
Salierno, M. Wetzler, D.E. Despósito, M.A. Levi, V. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
dynactin dynein adenosine triphosphatase kinesin molecular motor dynactin microtubule associated protein molecular motor animal cell article cell organelle cell tracking controlled study gene dosage in vitro study melanosome microtubule molecular dynamics nonhuman protein function protein interaction protein stiffness protein transport quantitative analysis viscoelasticity Xenopus laevis animal biological model biomechanics cell survival elasticity mechanics melanosome metabolism microtubule viscosity Animals Biomechanics Cell Survival Elasticity Mechanical Processes Melanosomes Microtubule-Associated Proteins Microtubules Models, Biological Molecular Motor Proteins Protein Transport Viscosity Xenopus laevis |
topic |
dynactin dynein adenosine triphosphatase kinesin molecular motor dynactin microtubule associated protein molecular motor animal cell article cell organelle cell tracking controlled study gene dosage in vitro study melanosome microtubule molecular dynamics nonhuman protein function protein interaction protein stiffness protein transport quantitative analysis viscoelasticity Xenopus laevis animal biological model biomechanics cell survival elasticity mechanics melanosome metabolism microtubule viscosity Animals Biomechanics Cell Survival Elasticity Mechanical Processes Melanosomes Microtubule-Associated Proteins Microtubules Models, Biological Molecular Motor Proteins Protein Transport Viscosity Xenopus laevis |
dc.description.none.fl_txt_mv |
The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al. Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salierno, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wetzler, D.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Levi, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_19326203_v6_n4_p_Bruno |
url |
http://hdl.handle.net/20.500.12110/paper_19326203_v6_n4_p_Bruno |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
PLoS ONE 2011;6(4) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618732795592704 |
score |
13.070432 |