Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells

Autores
Bruno, L.; Salierno, M.; Wetzler, D.E.; Despósito, M.A.; Levi, V.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al.
Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Salierno, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wetzler, D.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Levi, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
PLoS ONE 2011;6(4)
Materia
dynactin
dynein adenosine triphosphatase
kinesin
molecular motor
dynactin
microtubule associated protein
molecular motor
animal cell
article
cell organelle
cell tracking
controlled study
gene dosage
in vitro study
melanosome
microtubule
molecular dynamics
nonhuman
protein function
protein interaction
protein stiffness
protein transport
quantitative analysis
viscoelasticity
Xenopus laevis
animal
biological model
biomechanics
cell survival
elasticity
mechanics
melanosome
metabolism
microtubule
viscosity
Animals
Biomechanics
Cell Survival
Elasticity
Mechanical Processes
Melanosomes
Microtubule-Associated Proteins
Microtubules
Models, Biological
Molecular Motor Proteins
Protein Transport
Viscosity
Xenopus laevis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_19326203_v6_n4_p_Bruno

id BDUBAFCEN_508e5a3570c70a8d1ffb611675032269
oai_identifier_str paperaa:paper_19326203_v6_n4_p_Bruno
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cellsBruno, L.Salierno, M.Wetzler, D.E.Despósito, M.A.Levi, V.dynactindynein adenosine triphosphatasekinesinmolecular motordynactinmicrotubule associated proteinmolecular motoranimal cellarticlecell organellecell trackingcontrolled studygene dosagein vitro studymelanosomemicrotubulemolecular dynamicsnonhumanprotein functionprotein interactionprotein stiffnessprotein transportquantitative analysisviscoelasticityXenopus laevisanimalbiological modelbiomechanicscell survivalelasticitymechanicsmelanosomemetabolismmicrotubuleviscosityAnimalsBiomechanicsCell SurvivalElasticityMechanical ProcessesMelanosomesMicrotubule-Associated ProteinsMicrotubulesModels, BiologicalMolecular Motor ProteinsProtein TransportViscosityXenopus laevisThe organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al.Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Salierno, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Wetzler, D.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Levi, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_19326203_v6_n4_p_BrunoPLoS ONE 2011;6(4)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:49Zpaperaa:paper_19326203_v6_n4_p_BrunoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.485Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
title Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
spellingShingle Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
Bruno, L.
dynactin
dynein adenosine triphosphatase
kinesin
molecular motor
dynactin
microtubule associated protein
molecular motor
animal cell
article
cell organelle
cell tracking
controlled study
gene dosage
in vitro study
melanosome
microtubule
molecular dynamics
nonhuman
protein function
protein interaction
protein stiffness
protein transport
quantitative analysis
viscoelasticity
Xenopus laevis
animal
biological model
biomechanics
cell survival
elasticity
mechanics
melanosome
metabolism
microtubule
viscosity
Animals
Biomechanics
Cell Survival
Elasticity
Mechanical Processes
Melanosomes
Microtubule-Associated Proteins
Microtubules
Models, Biological
Molecular Motor Proteins
Protein Transport
Viscosity
Xenopus laevis
title_short Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
title_full Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
title_fullStr Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
title_full_unstemmed Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
title_sort Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells
dc.creator.none.fl_str_mv Bruno, L.
Salierno, M.
Wetzler, D.E.
Despósito, M.A.
Levi, V.
author Bruno, L.
author_facet Bruno, L.
Salierno, M.
Wetzler, D.E.
Despósito, M.A.
Levi, V.
author_role author
author2 Salierno, M.
Wetzler, D.E.
Despósito, M.A.
Levi, V.
author2_role author
author
author
author
dc.subject.none.fl_str_mv dynactin
dynein adenosine triphosphatase
kinesin
molecular motor
dynactin
microtubule associated protein
molecular motor
animal cell
article
cell organelle
cell tracking
controlled study
gene dosage
in vitro study
melanosome
microtubule
molecular dynamics
nonhuman
protein function
protein interaction
protein stiffness
protein transport
quantitative analysis
viscoelasticity
Xenopus laevis
animal
biological model
biomechanics
cell survival
elasticity
mechanics
melanosome
metabolism
microtubule
viscosity
Animals
Biomechanics
Cell Survival
Elasticity
Mechanical Processes
Melanosomes
Microtubule-Associated Proteins
Microtubules
Models, Biological
Molecular Motor Proteins
Protein Transport
Viscosity
Xenopus laevis
topic dynactin
dynein adenosine triphosphatase
kinesin
molecular motor
dynactin
microtubule associated protein
molecular motor
animal cell
article
cell organelle
cell tracking
controlled study
gene dosage
in vitro study
melanosome
microtubule
molecular dynamics
nonhuman
protein function
protein interaction
protein stiffness
protein transport
quantitative analysis
viscoelasticity
Xenopus laevis
animal
biological model
biomechanics
cell survival
elasticity
mechanics
melanosome
metabolism
microtubule
viscosity
Animals
Biomechanics
Cell Survival
Elasticity
Mechanical Processes
Melanosomes
Microtubule-Associated Proteins
Microtubules
Models, Biological
Molecular Motor Proteins
Protein Transport
Viscosity
Xenopus laevis
dc.description.none.fl_txt_mv The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al.
Fil:Bruno, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Salierno, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wetzler, D.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Levi, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules. © 2011 Bruno et al.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_19326203_v6_n4_p_Bruno
url http://hdl.handle.net/20.500.12110/paper_19326203_v6_n4_p_Bruno
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv PLoS ONE 2011;6(4)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618732795592704
score 13.070432