Monotone discrete Newton iterations and elimination

Autores
Milaszewicz, J.P.
Año de publicación
1995
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995.
Fil:Milaszewicz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Comput Math Appl 1995;30(1):79-90
Materia
Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_08981221_v30_n1_p79_Milaszewicz

id BDUBAFCEN_3793e1090ee2634ec88ce9eb487c945c
oai_identifier_str paperaa:paper_08981221_v30_n1_p79_Milaszewicz
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Monotone discrete Newton iterations and eliminationMilaszewicz, J.P.Discretized Newton methodFunctional eliminationNonlinear systemsOrder convex functionsApproximation theoryBoundary value problemsConvergence of numerical methodsDifferentiation (calculus)Function evaluationIterative methodsMathematical modelsMatrix algebraTheorem provingDiscretized Newton methodFunctional eliminationJacobian matrixMonotone discrete Newton iterationsMonotone sequencesOrder convex functionsNonlinear equationsThe improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995.Fil:Milaszewicz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.1995info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_MilaszewiczComput Math Appl 1995;30(1):79-90reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:06Zpaperaa:paper_08981221_v30_n1_p79_MilaszewiczInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:08.077Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Monotone discrete Newton iterations and elimination
title Monotone discrete Newton iterations and elimination
spellingShingle Monotone discrete Newton iterations and elimination
Milaszewicz, J.P.
Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations
title_short Monotone discrete Newton iterations and elimination
title_full Monotone discrete Newton iterations and elimination
title_fullStr Monotone discrete Newton iterations and elimination
title_full_unstemmed Monotone discrete Newton iterations and elimination
title_sort Monotone discrete Newton iterations and elimination
dc.creator.none.fl_str_mv Milaszewicz, J.P.
author Milaszewicz, J.P.
author_facet Milaszewicz, J.P.
author_role author
dc.subject.none.fl_str_mv Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations
topic Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations
dc.description.none.fl_txt_mv The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995.
Fil:Milaszewicz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995.
publishDate 1995
dc.date.none.fl_str_mv 1995
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_Milaszewicz
url http://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_Milaszewicz
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Comput Math Appl 1995;30(1):79-90
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846142845261447168
score 12.712165