Monotone discrete Newton iterations and elimination
- Autores
- Milaszewicz, J.P.
- Año de publicación
- 1995
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995.
Fil:Milaszewicz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Comput Math Appl 1995;30(1):79-90
- Materia
-
Discretized Newton method
Functional elimination
Nonlinear systems
Order convex functions
Approximation theory
Boundary value problems
Convergence of numerical methods
Differentiation (calculus)
Function evaluation
Iterative methods
Mathematical models
Matrix algebra
Theorem proving
Discretized Newton method
Functional elimination
Jacobian matrix
Monotone discrete Newton iterations
Monotone sequences
Order convex functions
Nonlinear equations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_08981221_v30_n1_p79_Milaszewicz
Ver los metadatos del registro completo
id |
BDUBAFCEN_3793e1090ee2634ec88ce9eb487c945c |
---|---|
oai_identifier_str |
paperaa:paper_08981221_v30_n1_p79_Milaszewicz |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Monotone discrete Newton iterations and eliminationMilaszewicz, J.P.Discretized Newton methodFunctional eliminationNonlinear systemsOrder convex functionsApproximation theoryBoundary value problemsConvergence of numerical methodsDifferentiation (calculus)Function evaluationIterative methodsMathematical modelsMatrix algebraTheorem provingDiscretized Newton methodFunctional eliminationJacobian matrixMonotone discrete Newton iterationsMonotone sequencesOrder convex functionsNonlinear equationsThe improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995.Fil:Milaszewicz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.1995info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_MilaszewiczComput Math Appl 1995;30(1):79-90reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:06Zpaperaa:paper_08981221_v30_n1_p79_MilaszewiczInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:08.077Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Monotone discrete Newton iterations and elimination |
title |
Monotone discrete Newton iterations and elimination |
spellingShingle |
Monotone discrete Newton iterations and elimination Milaszewicz, J.P. Discretized Newton method Functional elimination Nonlinear systems Order convex functions Approximation theory Boundary value problems Convergence of numerical methods Differentiation (calculus) Function evaluation Iterative methods Mathematical models Matrix algebra Theorem proving Discretized Newton method Functional elimination Jacobian matrix Monotone discrete Newton iterations Monotone sequences Order convex functions Nonlinear equations |
title_short |
Monotone discrete Newton iterations and elimination |
title_full |
Monotone discrete Newton iterations and elimination |
title_fullStr |
Monotone discrete Newton iterations and elimination |
title_full_unstemmed |
Monotone discrete Newton iterations and elimination |
title_sort |
Monotone discrete Newton iterations and elimination |
dc.creator.none.fl_str_mv |
Milaszewicz, J.P. |
author |
Milaszewicz, J.P. |
author_facet |
Milaszewicz, J.P. |
author_role |
author |
dc.subject.none.fl_str_mv |
Discretized Newton method Functional elimination Nonlinear systems Order convex functions Approximation theory Boundary value problems Convergence of numerical methods Differentiation (calculus) Function evaluation Iterative methods Mathematical models Matrix algebra Theorem proving Discretized Newton method Functional elimination Jacobian matrix Monotone discrete Newton iterations Monotone sequences Order convex functions Nonlinear equations |
topic |
Discretized Newton method Functional elimination Nonlinear systems Order convex functions Approximation theory Boundary value problems Convergence of numerical methods Differentiation (calculus) Function evaluation Iterative methods Mathematical models Matrix algebra Theorem proving Discretized Newton method Functional elimination Jacobian matrix Monotone discrete Newton iterations Monotone sequences Order convex functions Nonlinear equations |
dc.description.none.fl_txt_mv |
The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995. Fil:Milaszewicz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
The improvement in convergence by means of accurate functional elimination in the context of the monotone Newton theorem is further analyzed and extended to discrete approximations of the Newton method. © 1995. |
publishDate |
1995 |
dc.date.none.fl_str_mv |
1995 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_Milaszewicz |
url |
http://hdl.handle.net/20.500.12110/paper_08981221_v30_n1_p79_Milaszewicz |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Comput Math Appl 1995;30(1):79-90 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142845261447168 |
score |
12.712165 |