A new formulation for the Traveling Deliveryman Problem
- Autores
- Méndez-Díaz, I.; Zabala, P.; Lucena, A.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree. © 2008 Elsevier B.V. All rights reserved.
Fil:Méndez-Díaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Zabala, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Appl Math 2008;156(17):3223-3237
- Materia
-
Branch-and-cut algorithms
Integer programming
Traveling deliveryman problem
Dynamic programming
Hamiltonians
Integer programming
Linearization
Meats
Particle size analysis
Branch-and-Bound
Branch-and-cut algorithms
Computational results
Convex hulls
Cutting plane algorithms
Enumeration trees
Feasible solutions
Hamiltonian path problems
Hamiltonian paths
Integer programming formulations
Linear programming relaxations
Minimum costs
Traveling deliveryman problem
Valid inequalities
Linear programming - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0166218X_v156_n17_p3223_MendezDiaz
Ver los metadatos del registro completo
id |
BDUBAFCEN_20b2f30d4e2fccfbaa26a7ac2bae0ca5 |
---|---|
oai_identifier_str |
paperaa:paper_0166218X_v156_n17_p3223_MendezDiaz |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A new formulation for the Traveling Deliveryman ProblemMéndez-Díaz, I.Zabala, P.Lucena, A.Branch-and-cut algorithmsInteger programmingTraveling deliveryman problemDynamic programmingHamiltoniansInteger programmingLinearizationMeatsParticle size analysisBranch-and-BoundBranch-and-cut algorithmsComputational resultsConvex hullsCutting plane algorithmsEnumeration treesFeasible solutionsHamiltonian path problemsHamiltonian pathsInteger programming formulationsLinear programming relaxationsMinimum costsTraveling deliveryman problemValid inequalitiesLinear programmingThe Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree. © 2008 Elsevier B.V. All rights reserved.Fil:Méndez-Díaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Zabala, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v156_n17_p3223_MendezDiazDiscrete Appl Math 2008;156(17):3223-3237reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:01Zpaperaa:paper_0166218X_v156_n17_p3223_MendezDiazInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:02.081Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A new formulation for the Traveling Deliveryman Problem |
title |
A new formulation for the Traveling Deliveryman Problem |
spellingShingle |
A new formulation for the Traveling Deliveryman Problem Méndez-Díaz, I. Branch-and-cut algorithms Integer programming Traveling deliveryman problem Dynamic programming Hamiltonians Integer programming Linearization Meats Particle size analysis Branch-and-Bound Branch-and-cut algorithms Computational results Convex hulls Cutting plane algorithms Enumeration trees Feasible solutions Hamiltonian path problems Hamiltonian paths Integer programming formulations Linear programming relaxations Minimum costs Traveling deliveryman problem Valid inequalities Linear programming |
title_short |
A new formulation for the Traveling Deliveryman Problem |
title_full |
A new formulation for the Traveling Deliveryman Problem |
title_fullStr |
A new formulation for the Traveling Deliveryman Problem |
title_full_unstemmed |
A new formulation for the Traveling Deliveryman Problem |
title_sort |
A new formulation for the Traveling Deliveryman Problem |
dc.creator.none.fl_str_mv |
Méndez-Díaz, I. Zabala, P. Lucena, A. |
author |
Méndez-Díaz, I. |
author_facet |
Méndez-Díaz, I. Zabala, P. Lucena, A. |
author_role |
author |
author2 |
Zabala, P. Lucena, A. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Branch-and-cut algorithms Integer programming Traveling deliveryman problem Dynamic programming Hamiltonians Integer programming Linearization Meats Particle size analysis Branch-and-Bound Branch-and-cut algorithms Computational results Convex hulls Cutting plane algorithms Enumeration trees Feasible solutions Hamiltonian path problems Hamiltonian paths Integer programming formulations Linear programming relaxations Minimum costs Traveling deliveryman problem Valid inequalities Linear programming |
topic |
Branch-and-cut algorithms Integer programming Traveling deliveryman problem Dynamic programming Hamiltonians Integer programming Linearization Meats Particle size analysis Branch-and-Bound Branch-and-cut algorithms Computational results Convex hulls Cutting plane algorithms Enumeration trees Feasible solutions Hamiltonian path problems Hamiltonian paths Integer programming formulations Linear programming relaxations Minimum costs Traveling deliveryman problem Valid inequalities Linear programming |
dc.description.none.fl_txt_mv |
The Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree. © 2008 Elsevier B.V. All rights reserved. Fil:Méndez-Díaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Zabala, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
The Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree. © 2008 Elsevier B.V. All rights reserved. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n17_p3223_MendezDiaz |
url |
http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n17_p3223_MendezDiaz |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Discrete Appl Math 2008;156(17):3223-3237 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618737741725696 |
score |
13.070432 |