A new formulation for the Traveling Deliveryman Problem

Autores
Méndez-Díaz, I.; Zabala, P.; Lucena, A.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree. © 2008 Elsevier B.V. All rights reserved.
Fil:Méndez-Díaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Zabala, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Discrete Appl Math 2008;156(17):3223-3237
Materia
Branch-and-cut algorithms
Integer programming
Traveling deliveryman problem
Dynamic programming
Hamiltonians
Integer programming
Linearization
Meats
Particle size analysis
Branch-and-Bound
Branch-and-cut algorithms
Computational results
Convex hulls
Cutting plane algorithms
Enumeration trees
Feasible solutions
Hamiltonian path problems
Hamiltonian paths
Integer programming formulations
Linear programming relaxations
Minimum costs
Traveling deliveryman problem
Valid inequalities
Linear programming
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0166218X_v156_n17_p3223_MendezDiaz

id BDUBAFCEN_20b2f30d4e2fccfbaa26a7ac2bae0ca5
oai_identifier_str paperaa:paper_0166218X_v156_n17_p3223_MendezDiaz
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A new formulation for the Traveling Deliveryman ProblemMéndez-Díaz, I.Zabala, P.Lucena, A.Branch-and-cut algorithmsInteger programmingTraveling deliveryman problemDynamic programmingHamiltoniansInteger programmingLinearizationMeatsParticle size analysisBranch-and-BoundBranch-and-cut algorithmsComputational resultsConvex hullsCutting plane algorithmsEnumeration treesFeasible solutionsHamiltonian path problemsHamiltonian pathsInteger programming formulationsLinear programming relaxationsMinimum costsTraveling deliveryman problemValid inequalitiesLinear programmingThe Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree. © 2008 Elsevier B.V. All rights reserved.Fil:Méndez-Díaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Zabala, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v156_n17_p3223_MendezDiazDiscrete Appl Math 2008;156(17):3223-3237reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:01Zpaperaa:paper_0166218X_v156_n17_p3223_MendezDiazInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:02.081Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A new formulation for the Traveling Deliveryman Problem
title A new formulation for the Traveling Deliveryman Problem
spellingShingle A new formulation for the Traveling Deliveryman Problem
Méndez-Díaz, I.
Branch-and-cut algorithms
Integer programming
Traveling deliveryman problem
Dynamic programming
Hamiltonians
Integer programming
Linearization
Meats
Particle size analysis
Branch-and-Bound
Branch-and-cut algorithms
Computational results
Convex hulls
Cutting plane algorithms
Enumeration trees
Feasible solutions
Hamiltonian path problems
Hamiltonian paths
Integer programming formulations
Linear programming relaxations
Minimum costs
Traveling deliveryman problem
Valid inequalities
Linear programming
title_short A new formulation for the Traveling Deliveryman Problem
title_full A new formulation for the Traveling Deliveryman Problem
title_fullStr A new formulation for the Traveling Deliveryman Problem
title_full_unstemmed A new formulation for the Traveling Deliveryman Problem
title_sort A new formulation for the Traveling Deliveryman Problem
dc.creator.none.fl_str_mv Méndez-Díaz, I.
Zabala, P.
Lucena, A.
author Méndez-Díaz, I.
author_facet Méndez-Díaz, I.
Zabala, P.
Lucena, A.
author_role author
author2 Zabala, P.
Lucena, A.
author2_role author
author
dc.subject.none.fl_str_mv Branch-and-cut algorithms
Integer programming
Traveling deliveryman problem
Dynamic programming
Hamiltonians
Integer programming
Linearization
Meats
Particle size analysis
Branch-and-Bound
Branch-and-cut algorithms
Computational results
Convex hulls
Cutting plane algorithms
Enumeration trees
Feasible solutions
Hamiltonian path problems
Hamiltonian paths
Integer programming formulations
Linear programming relaxations
Minimum costs
Traveling deliveryman problem
Valid inequalities
Linear programming
topic Branch-and-cut algorithms
Integer programming
Traveling deliveryman problem
Dynamic programming
Hamiltonians
Integer programming
Linearization
Meats
Particle size analysis
Branch-and-Bound
Branch-and-cut algorithms
Computational results
Convex hulls
Cutting plane algorithms
Enumeration trees
Feasible solutions
Hamiltonian path problems
Hamiltonian paths
Integer programming formulations
Linear programming relaxations
Minimum costs
Traveling deliveryman problem
Valid inequalities
Linear programming
dc.description.none.fl_txt_mv The Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree. © 2008 Elsevier B.V. All rights reserved.
Fil:Méndez-Díaz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Zabala, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree. © 2008 Elsevier B.V. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n17_p3223_MendezDiaz
url http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n17_p3223_MendezDiaz
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Discrete Appl Math 2008;156(17):3223-3237
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618737741725696
score 13.070432