Revising the AGM postulates

Autores
Fermé, Eduardo Leopoldo
Año de publicación
1999
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Hansson, Sven Ove
Descripción
The logic of theory became a major subject in philosophical logic and artificial intelligence in the middle of the 1980's. The initial step was provided by Levi [Lev67, Lev80] and Alchourrón, Gärdenfors and Makinson in [AGM85] (the commonly called AGM model). In the AGM there are three types of change: expansion, contraction and revision. One way of defining the AGM functions is by means of postulates. Among these postulates, recovery, in contraction, and success, in revision, have provoked the greatest number of criticisms. The present dissertation analyzes both these postulates in detail (see Chapters 3 and 5) and proposes alternative models of contraction (Chapter 4) and revision (Chapter 6). In Chapters 7 and (8 we introduce the notion of Credibility-Limited operators and define contraction and revision functions in terms of it. In the Appendix we introduce a battery of alternative postulates that allows us to construct several different change functions. The background needed to read the dissertation is presented in Chapters 1and 2.
Fil: Fermé, Eduardo Leopoldo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n3127_Ferme

id BDUBAFCEN_19c4100dfdc53249d564395f49912fd9
oai_identifier_str tesis:tesis_n3127_Ferme
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Revising the AGM postulatesFermé, Eduardo LeopoldoThe logic of theory became a major subject in philosophical logic and artificial intelligence in the middle of the 1980's. The initial step was provided by Levi [Lev67, Lev80] and Alchourrón, Gärdenfors and Makinson in [AGM85] (the commonly called AGM model). In the AGM there are three types of change: expansion, contraction and revision. One way of defining the AGM functions is by means of postulates. Among these postulates, recovery, in contraction, and success, in revision, have provoked the greatest number of criticisms. The present dissertation analyzes both these postulates in detail (see Chapters 3 and 5) and proposes alternative models of contraction (Chapter 4) and revision (Chapter 6). In Chapters 7 and (8 we introduce the notion of Credibility-Limited operators and define contraction and revision functions in terms of it. In the Appendix we introduce a battery of alternative postulates that allows us to construct several different change functions. The background needed to read the dissertation is presented in Chapters 1and 2.Fil: Fermé, Eduardo Leopoldo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesHansson, Sven Ove1999info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n3127_Fermespainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-11-06T09:38:14Ztesis:tesis_n3127_FermeInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:38:15.463Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Revising the AGM postulates
title Revising the AGM postulates
spellingShingle Revising the AGM postulates
Fermé, Eduardo Leopoldo
title_short Revising the AGM postulates
title_full Revising the AGM postulates
title_fullStr Revising the AGM postulates
title_full_unstemmed Revising the AGM postulates
title_sort Revising the AGM postulates
dc.creator.none.fl_str_mv Fermé, Eduardo Leopoldo
author Fermé, Eduardo Leopoldo
author_facet Fermé, Eduardo Leopoldo
author_role author
dc.contributor.none.fl_str_mv Hansson, Sven Ove
dc.description.none.fl_txt_mv The logic of theory became a major subject in philosophical logic and artificial intelligence in the middle of the 1980's. The initial step was provided by Levi [Lev67, Lev80] and Alchourrón, Gärdenfors and Makinson in [AGM85] (the commonly called AGM model). In the AGM there are three types of change: expansion, contraction and revision. One way of defining the AGM functions is by means of postulates. Among these postulates, recovery, in contraction, and success, in revision, have provoked the greatest number of criticisms. The present dissertation analyzes both these postulates in detail (see Chapters 3 and 5) and proposes alternative models of contraction (Chapter 4) and revision (Chapter 6). In Chapters 7 and (8 we introduce the notion of Credibility-Limited operators and define contraction and revision functions in terms of it. In the Appendix we introduce a battery of alternative postulates that allows us to construct several different change functions. The background needed to read the dissertation is presented in Chapters 1and 2.
Fil: Fermé, Eduardo Leopoldo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The logic of theory became a major subject in philosophical logic and artificial intelligence in the middle of the 1980's. The initial step was provided by Levi [Lev67, Lev80] and Alchourrón, Gärdenfors and Makinson in [AGM85] (the commonly called AGM model). In the AGM there are three types of change: expansion, contraction and revision. One way of defining the AGM functions is by means of postulates. Among these postulates, recovery, in contraction, and success, in revision, have provoked the greatest number of criticisms. The present dissertation analyzes both these postulates in detail (see Chapters 3 and 5) and proposes alternative models of contraction (Chapter 4) and revision (Chapter 6). In Chapters 7 and (8 we introduce the notion of Credibility-Limited operators and define contraction and revision functions in terms of it. In the Appendix we introduce a battery of alternative postulates that allows us to construct several different change functions. The background needed to read the dissertation is presented in Chapters 1and 2.
publishDate 1999
dc.date.none.fl_str_mv 1999
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n3127_Ferme
url https://hdl.handle.net/20.500.12110/tesis_n3127_Ferme
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1848046060724813824
score 13.142177