Zero-range condensation at criticality

Autores
Armendáriz, I.; Grosskinsky, S.; Loulakis, M.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved.
Fil:Armendáriz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Stoch. Processes Appl. 2013;123(9):3466-3496
Materia
Condensation
Conditional maximum
Subexponential tails
Zero-range process
Condensation transition
Conditional maximum
Critical density
Law of large numbers
Limiting values
Stretched exponential
Subexponential tails
Zero-range process
Computer simulation
Statistics
Stochastic systems
Condensation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_03044149_v123_n9_p3466_Armendariz

id BDUBAFCEN_16aaf7273786dec38a1e9f053336aac3
oai_identifier_str paperaa:paper_03044149_v123_n9_p3466_Armendariz
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Zero-range condensation at criticalityArmendáriz, I.Grosskinsky, S.Loulakis, M.CondensationConditional maximumSubexponential tailsZero-range processCondensation transitionConditional maximumCritical densityLaw of large numbersLimiting valuesStretched exponentialSubexponential tailsZero-range processComputer simulationStatisticsStochastic systemsCondensationZero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved.Fil:Armendáriz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_ArmendarizStoch. Processes Appl. 2013;123(9):3466-3496reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:00Zpaperaa:paper_03044149_v123_n9_p3466_ArmendarizInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:01.583Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Zero-range condensation at criticality
title Zero-range condensation at criticality
spellingShingle Zero-range condensation at criticality
Armendáriz, I.
Condensation
Conditional maximum
Subexponential tails
Zero-range process
Condensation transition
Conditional maximum
Critical density
Law of large numbers
Limiting values
Stretched exponential
Subexponential tails
Zero-range process
Computer simulation
Statistics
Stochastic systems
Condensation
title_short Zero-range condensation at criticality
title_full Zero-range condensation at criticality
title_fullStr Zero-range condensation at criticality
title_full_unstemmed Zero-range condensation at criticality
title_sort Zero-range condensation at criticality
dc.creator.none.fl_str_mv Armendáriz, I.
Grosskinsky, S.
Loulakis, M.
author Armendáriz, I.
author_facet Armendáriz, I.
Grosskinsky, S.
Loulakis, M.
author_role author
author2 Grosskinsky, S.
Loulakis, M.
author2_role author
author
dc.subject.none.fl_str_mv Condensation
Conditional maximum
Subexponential tails
Zero-range process
Condensation transition
Conditional maximum
Critical density
Law of large numbers
Limiting values
Stretched exponential
Subexponential tails
Zero-range process
Computer simulation
Statistics
Stochastic systems
Condensation
topic Condensation
Conditional maximum
Subexponential tails
Zero-range process
Condensation transition
Conditional maximum
Critical density
Law of large numbers
Limiting values
Stretched exponential
Subexponential tails
Zero-range process
Computer simulation
Statistics
Stochastic systems
Condensation
dc.description.none.fl_txt_mv Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved.
Fil:Armendáriz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_Armendariz
url http://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_Armendariz
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Stoch. Processes Appl. 2013;123(9):3466-3496
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618737214291968
score 13.070432