Zero-range condensation at criticality
- Autores
- Armendáriz, I.; Grosskinsky, S.; Loulakis, M.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved.
Fil:Armendáriz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Stoch. Processes Appl. 2013;123(9):3466-3496
- Materia
-
Condensation
Conditional maximum
Subexponential tails
Zero-range process
Condensation transition
Conditional maximum
Critical density
Law of large numbers
Limiting values
Stretched exponential
Subexponential tails
Zero-range process
Computer simulation
Statistics
Stochastic systems
Condensation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_03044149_v123_n9_p3466_Armendariz
Ver los metadatos del registro completo
id |
BDUBAFCEN_16aaf7273786dec38a1e9f053336aac3 |
---|---|
oai_identifier_str |
paperaa:paper_03044149_v123_n9_p3466_Armendariz |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Zero-range condensation at criticalityArmendáriz, I.Grosskinsky, S.Loulakis, M.CondensationConditional maximumSubexponential tailsZero-range processCondensation transitionConditional maximumCritical densityLaw of large numbersLimiting valuesStretched exponentialSubexponential tailsZero-range processComputer simulationStatisticsStochastic systemsCondensationZero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved.Fil:Armendáriz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_ArmendarizStoch. Processes Appl. 2013;123(9):3466-3496reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:00Zpaperaa:paper_03044149_v123_n9_p3466_ArmendarizInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:01.583Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Zero-range condensation at criticality |
title |
Zero-range condensation at criticality |
spellingShingle |
Zero-range condensation at criticality Armendáriz, I. Condensation Conditional maximum Subexponential tails Zero-range process Condensation transition Conditional maximum Critical density Law of large numbers Limiting values Stretched exponential Subexponential tails Zero-range process Computer simulation Statistics Stochastic systems Condensation |
title_short |
Zero-range condensation at criticality |
title_full |
Zero-range condensation at criticality |
title_fullStr |
Zero-range condensation at criticality |
title_full_unstemmed |
Zero-range condensation at criticality |
title_sort |
Zero-range condensation at criticality |
dc.creator.none.fl_str_mv |
Armendáriz, I. Grosskinsky, S. Loulakis, M. |
author |
Armendáriz, I. |
author_facet |
Armendáriz, I. Grosskinsky, S. Loulakis, M. |
author_role |
author |
author2 |
Grosskinsky, S. Loulakis, M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Condensation Conditional maximum Subexponential tails Zero-range process Condensation transition Conditional maximum Critical density Law of large numbers Limiting values Stretched exponential Subexponential tails Zero-range process Computer simulation Statistics Stochastic systems Condensation |
topic |
Condensation Conditional maximum Subexponential tails Zero-range process Condensation transition Conditional maximum Critical density Law of large numbers Limiting values Stretched exponential Subexponential tails Zero-range process Computer simulation Statistics Stochastic systems Condensation |
dc.description.none.fl_txt_mv |
Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved. Fil:Armendáriz, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. © 2013 Elsevier B.V. All rights reserved. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_Armendariz |
url |
http://hdl.handle.net/20.500.12110/paper_03044149_v123_n9_p3466_Armendariz |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Stoch. Processes Appl. 2013;123(9):3466-3496 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618737214291968 |
score |
13.070432 |