A neumann boundary value problem in two-ion electro-diffusion with unequal valencies
- Autores
- Amster, P.; Kwong, M.K.; Rogers, C.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In prior work, a series of two-point boundary value problems have been investigated for a steady state two-ion electro-diffusion model system in which the sum of the valencies ν + and ν - is zero. In that case, reduction is obtained to the canonical Painlevé II equation for the scaled electric field. Here, a physically important Neumann boundary value problem in the generic case when ν ++ν - = 0 is investigated. The problem is novel in that the model equation for the electric field involves yet to be determined boundary values of the solution. A reduction of the Neumann boundary value problem in terms of elliptic functions is obtained for privileged valency ratios. A topological index argument is used to establish the existence of a solution in the general case, under the assumption ν ++ν - ≤ 0.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Contin. Dyn. Syst. Ser. B 2012;17(7):2299-2311
- Materia
-
Neumann boundary conditions
Topological index
Two-ion electro-diffusion
Unequal valencies - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_15313492_v17_n7_p2299_Amster
Ver los metadatos del registro completo
id |
BDUBAFCEN_03cc11d2ffbe201c9233c0d48b4d157e |
---|---|
oai_identifier_str |
paperaa:paper_15313492_v17_n7_p2299_Amster |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A neumann boundary value problem in two-ion electro-diffusion with unequal valenciesAmster, P.Kwong, M.K.Rogers, C.Neumann boundary conditionsTopological indexTwo-ion electro-diffusionUnequal valenciesIn prior work, a series of two-point boundary value problems have been investigated for a steady state two-ion electro-diffusion model system in which the sum of the valencies ν + and ν - is zero. In that case, reduction is obtained to the canonical Painlevé II equation for the scaled electric field. Here, a physically important Neumann boundary value problem in the generic case when ν ++ν - = 0 is investigated. The problem is novel in that the model equation for the electric field involves yet to be determined boundary values of the solution. A reduction of the Neumann boundary value problem in terms of elliptic functions is obtained for privileged valency ratios. A topological index argument is used to establish the existence of a solution in the general case, under the assumption ν ++ν - ≤ 0.Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_15313492_v17_n7_p2299_AmsterDiscrete Contin. Dyn. Syst. Ser. B 2012;17(7):2299-2311reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_15313492_v17_n7_p2299_AmsterInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.472Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A neumann boundary value problem in two-ion electro-diffusion with unequal valencies |
title |
A neumann boundary value problem in two-ion electro-diffusion with unequal valencies |
spellingShingle |
A neumann boundary value problem in two-ion electro-diffusion with unequal valencies Amster, P. Neumann boundary conditions Topological index Two-ion electro-diffusion Unequal valencies |
title_short |
A neumann boundary value problem in two-ion electro-diffusion with unequal valencies |
title_full |
A neumann boundary value problem in two-ion electro-diffusion with unequal valencies |
title_fullStr |
A neumann boundary value problem in two-ion electro-diffusion with unequal valencies |
title_full_unstemmed |
A neumann boundary value problem in two-ion electro-diffusion with unequal valencies |
title_sort |
A neumann boundary value problem in two-ion electro-diffusion with unequal valencies |
dc.creator.none.fl_str_mv |
Amster, P. Kwong, M.K. Rogers, C. |
author |
Amster, P. |
author_facet |
Amster, P. Kwong, M.K. Rogers, C. |
author_role |
author |
author2 |
Kwong, M.K. Rogers, C. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Neumann boundary conditions Topological index Two-ion electro-diffusion Unequal valencies |
topic |
Neumann boundary conditions Topological index Two-ion electro-diffusion Unequal valencies |
dc.description.none.fl_txt_mv |
In prior work, a series of two-point boundary value problems have been investigated for a steady state two-ion electro-diffusion model system in which the sum of the valencies ν + and ν - is zero. In that case, reduction is obtained to the canonical Painlevé II equation for the scaled electric field. Here, a physically important Neumann boundary value problem in the generic case when ν ++ν - = 0 is investigated. The problem is novel in that the model equation for the electric field involves yet to be determined boundary values of the solution. A reduction of the Neumann boundary value problem in terms of elliptic functions is obtained for privileged valency ratios. A topological index argument is used to establish the existence of a solution in the general case, under the assumption ν ++ν - ≤ 0. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In prior work, a series of two-point boundary value problems have been investigated for a steady state two-ion electro-diffusion model system in which the sum of the valencies ν + and ν - is zero. In that case, reduction is obtained to the canonical Painlevé II equation for the scaled electric field. Here, a physically important Neumann boundary value problem in the generic case when ν ++ν - = 0 is investigated. The problem is novel in that the model equation for the electric field involves yet to be determined boundary values of the solution. A reduction of the Neumann boundary value problem in terms of elliptic functions is obtained for privileged valency ratios. A topological index argument is used to establish the existence of a solution in the general case, under the assumption ν ++ν - ≤ 0. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_15313492_v17_n7_p2299_Amster |
url |
http://hdl.handle.net/20.500.12110/paper_15313492_v17_n7_p2299_Amster |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Discrete Contin. Dyn. Syst. Ser. B 2012;17(7):2299-2311 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739783303168 |
score |
13.070432 |