A neumann boundary value problem in two-ion electro-diffusion with unequal valencies

Autores
Amster, P.; Kwong, M.K.; Rogers, C.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In prior work, a series of two-point boundary value problems have been investigated for a steady state two-ion electro-diffusion model system in which the sum of the valencies ν + and ν - is zero. In that case, reduction is obtained to the canonical Painlevé II equation for the scaled electric field. Here, a physically important Neumann boundary value problem in the generic case when ν ++ν - = 0 is investigated. The problem is novel in that the model equation for the electric field involves yet to be determined boundary values of the solution. A reduction of the Neumann boundary value problem in terms of elliptic functions is obtained for privileged valency ratios. A topological index argument is used to establish the existence of a solution in the general case, under the assumption ν ++ν - ≤ 0.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Discrete Contin. Dyn. Syst. Ser. B 2012;17(7):2299-2311
Materia
Neumann boundary conditions
Topological index
Two-ion electro-diffusion
Unequal valencies
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_15313492_v17_n7_p2299_Amster

id BDUBAFCEN_03cc11d2ffbe201c9233c0d48b4d157e
oai_identifier_str paperaa:paper_15313492_v17_n7_p2299_Amster
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A neumann boundary value problem in two-ion electro-diffusion with unequal valenciesAmster, P.Kwong, M.K.Rogers, C.Neumann boundary conditionsTopological indexTwo-ion electro-diffusionUnequal valenciesIn prior work, a series of two-point boundary value problems have been investigated for a steady state two-ion electro-diffusion model system in which the sum of the valencies ν + and ν - is zero. In that case, reduction is obtained to the canonical Painlevé II equation for the scaled electric field. Here, a physically important Neumann boundary value problem in the generic case when ν ++ν - = 0 is investigated. The problem is novel in that the model equation for the electric field involves yet to be determined boundary values of the solution. A reduction of the Neumann boundary value problem in terms of elliptic functions is obtained for privileged valency ratios. A topological index argument is used to establish the existence of a solution in the general case, under the assumption ν ++ν - ≤ 0.Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_15313492_v17_n7_p2299_AmsterDiscrete Contin. Dyn. Syst. Ser. B 2012;17(7):2299-2311reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_15313492_v17_n7_p2299_AmsterInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.472Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A neumann boundary value problem in two-ion electro-diffusion with unequal valencies
title A neumann boundary value problem in two-ion electro-diffusion with unequal valencies
spellingShingle A neumann boundary value problem in two-ion electro-diffusion with unequal valencies
Amster, P.
Neumann boundary conditions
Topological index
Two-ion electro-diffusion
Unequal valencies
title_short A neumann boundary value problem in two-ion electro-diffusion with unequal valencies
title_full A neumann boundary value problem in two-ion electro-diffusion with unequal valencies
title_fullStr A neumann boundary value problem in two-ion electro-diffusion with unequal valencies
title_full_unstemmed A neumann boundary value problem in two-ion electro-diffusion with unequal valencies
title_sort A neumann boundary value problem in two-ion electro-diffusion with unequal valencies
dc.creator.none.fl_str_mv Amster, P.
Kwong, M.K.
Rogers, C.
author Amster, P.
author_facet Amster, P.
Kwong, M.K.
Rogers, C.
author_role author
author2 Kwong, M.K.
Rogers, C.
author2_role author
author
dc.subject.none.fl_str_mv Neumann boundary conditions
Topological index
Two-ion electro-diffusion
Unequal valencies
topic Neumann boundary conditions
Topological index
Two-ion electro-diffusion
Unequal valencies
dc.description.none.fl_txt_mv In prior work, a series of two-point boundary value problems have been investigated for a steady state two-ion electro-diffusion model system in which the sum of the valencies ν + and ν - is zero. In that case, reduction is obtained to the canonical Painlevé II equation for the scaled electric field. Here, a physically important Neumann boundary value problem in the generic case when ν ++ν - = 0 is investigated. The problem is novel in that the model equation for the electric field involves yet to be determined boundary values of the solution. A reduction of the Neumann boundary value problem in terms of elliptic functions is obtained for privileged valency ratios. A topological index argument is used to establish the existence of a solution in the general case, under the assumption ν ++ν - ≤ 0.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In prior work, a series of two-point boundary value problems have been investigated for a steady state two-ion electro-diffusion model system in which the sum of the valencies ν + and ν - is zero. In that case, reduction is obtained to the canonical Painlevé II equation for the scaled electric field. Here, a physically important Neumann boundary value problem in the generic case when ν ++ν - = 0 is investigated. The problem is novel in that the model equation for the electric field involves yet to be determined boundary values of the solution. A reduction of the Neumann boundary value problem in terms of elliptic functions is obtained for privileged valency ratios. A topological index argument is used to establish the existence of a solution in the general case, under the assumption ν ++ν - ≤ 0.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_15313492_v17_n7_p2299_Amster
url http://hdl.handle.net/20.500.12110/paper_15313492_v17_n7_p2299_Amster
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Discrete Contin. Dyn. Syst. Ser. B 2012;17(7):2299-2311
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618739783303168
score 13.070432