Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data

Autores
Perez, S. Ivan; Tejedor, Marcelo; Novo, Nelson M.; Aristide, Leandro
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The estimation of phylogenetic relationships and divergence times among a group of organisms is a fundamental first step toward understanding its biological diversification. The time of the most recent or last common ancestor (LCA) of extant platyrrhines is one of the most controversial among scholars of primate evolution. Here we use two molecular based approaches to date the initial divergence of the platyrrhine clade, Bayesian estimations under a relaxed-clock model and substitution rate plus generation time and body size, employing the fossil record and genome datasets. We also explore the robustness of our estimations with respect to changes in topology, fossil constraints and substitution rate, and discuss the implications of our findings for understanding the platyrrhine radiation. Our results suggest that fossil constraints, topology and substitution rate have an important influence on our divergence time estimates. Bayesian estimates using conservative but realistic fossil constraints suggest that the LCA of extant platyrrhines existed at ca. 29 Ma, with the 95% confidence limit for the node ranging from 27-31 Ma. The LCA of extant platyrrhine monkeys based on substitution rate corrected by generation time and body size was established between 21-29 Ma. The estimates based on the two approaches used in this study recalibrate the ages of the major platyrrhine clades and corroborate the hypothesis that they constitute very old lineages. These results can help reconcile several controversial points concerning the affinities of key early Miocene fossils that have arisen among paleontologists and molecular systematists. However, they cannot resolve the controversy of whether these fossil species truly belong to the extant lineages or to a stem platyrrhine clade. That question can only be resolved by morphology. Finally, we show that the use of different approaches and well supported fossil information gives a more robust divergence time estimate of a clade.
Facultad de Ciencias Naturales y Museo
Materia
Ciencias Naturales
Primates
diversificación biológica
tiempo de divergencia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/29519

id SEDICI_ff36897e60f9e78c855b3fe6952795cc
oai_identifier_str oai:sedici.unlp.edu.ar:10915/29519
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular dataPerez, S. IvanTejedor, MarceloNovo, Nelson M.Aristide, LeandroCiencias NaturalesPrimatesdiversificación biológicatiempo de divergenciaThe estimation of phylogenetic relationships and divergence times among a group of organisms is a fundamental first step toward understanding its biological diversification. The time of the most recent or last common ancestor (LCA) of extant platyrrhines is one of the most controversial among scholars of primate evolution. Here we use two molecular based approaches to date the initial divergence of the platyrrhine clade, Bayesian estimations under a relaxed-clock model and substitution rate plus generation time and body size, employing the fossil record and genome datasets. We also explore the robustness of our estimations with respect to changes in topology, fossil constraints and substitution rate, and discuss the implications of our findings for understanding the platyrrhine radiation. Our results suggest that fossil constraints, topology and substitution rate have an important influence on our divergence time estimates. Bayesian estimates using conservative but realistic fossil constraints suggest that the LCA of extant platyrrhines existed at ca. 29 Ma, with the 95% confidence limit for the node ranging from 27-31 Ma. The LCA of extant platyrrhine monkeys based on substitution rate corrected by generation time and body size was established between 21-29 Ma. The estimates based on the two approaches used in this study recalibrate the ages of the major platyrrhine clades and corroborate the hypothesis that they constitute very old lineages. These results can help reconcile several controversial points concerning the affinities of key early Miocene fossils that have arisen among paleontologists and molecular systematists. However, they cannot resolve the controversy of whether these fossil species truly belong to the extant lineages or to a stem platyrrhine clade. That question can only be resolved by morphology. Finally, we show that the use of different approaches and well supported fossil information gives a more robust divergence time estimate of a clade.Facultad de Ciencias Naturales y Museo2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/29519enginfo:eu-repo/semantics/altIdentifier/url/http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0068029info:eu-repo/semantics/altIdentifier/issn/1932-6203info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0068029info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:57:12Zoai:sedici.unlp.edu.ar:10915/29519Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:57:13.082SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data
title Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data
spellingShingle Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data
Perez, S. Ivan
Ciencias Naturales
Primates
diversificación biológica
tiempo de divergencia
title_short Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data
title_full Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data
title_fullStr Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data
title_full_unstemmed Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data
title_sort Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data
dc.creator.none.fl_str_mv Perez, S. Ivan
Tejedor, Marcelo
Novo, Nelson M.
Aristide, Leandro
author Perez, S. Ivan
author_facet Perez, S. Ivan
Tejedor, Marcelo
Novo, Nelson M.
Aristide, Leandro
author_role author
author2 Tejedor, Marcelo
Novo, Nelson M.
Aristide, Leandro
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Naturales
Primates
diversificación biológica
tiempo de divergencia
topic Ciencias Naturales
Primates
diversificación biológica
tiempo de divergencia
dc.description.none.fl_txt_mv The estimation of phylogenetic relationships and divergence times among a group of organisms is a fundamental first step toward understanding its biological diversification. The time of the most recent or last common ancestor (LCA) of extant platyrrhines is one of the most controversial among scholars of primate evolution. Here we use two molecular based approaches to date the initial divergence of the platyrrhine clade, Bayesian estimations under a relaxed-clock model and substitution rate plus generation time and body size, employing the fossil record and genome datasets. We also explore the robustness of our estimations with respect to changes in topology, fossil constraints and substitution rate, and discuss the implications of our findings for understanding the platyrrhine radiation. Our results suggest that fossil constraints, topology and substitution rate have an important influence on our divergence time estimates. Bayesian estimates using conservative but realistic fossil constraints suggest that the LCA of extant platyrrhines existed at ca. 29 Ma, with the 95% confidence limit for the node ranging from 27-31 Ma. The LCA of extant platyrrhine monkeys based on substitution rate corrected by generation time and body size was established between 21-29 Ma. The estimates based on the two approaches used in this study recalibrate the ages of the major platyrrhine clades and corroborate the hypothesis that they constitute very old lineages. These results can help reconcile several controversial points concerning the affinities of key early Miocene fossils that have arisen among paleontologists and molecular systematists. However, they cannot resolve the controversy of whether these fossil species truly belong to the extant lineages or to a stem platyrrhine clade. That question can only be resolved by morphology. Finally, we show that the use of different approaches and well supported fossil information gives a more robust divergence time estimate of a clade.
Facultad de Ciencias Naturales y Museo
description The estimation of phylogenetic relationships and divergence times among a group of organisms is a fundamental first step toward understanding its biological diversification. The time of the most recent or last common ancestor (LCA) of extant platyrrhines is one of the most controversial among scholars of primate evolution. Here we use two molecular based approaches to date the initial divergence of the platyrrhine clade, Bayesian estimations under a relaxed-clock model and substitution rate plus generation time and body size, employing the fossil record and genome datasets. We also explore the robustness of our estimations with respect to changes in topology, fossil constraints and substitution rate, and discuss the implications of our findings for understanding the platyrrhine radiation. Our results suggest that fossil constraints, topology and substitution rate have an important influence on our divergence time estimates. Bayesian estimates using conservative but realistic fossil constraints suggest that the LCA of extant platyrrhines existed at ca. 29 Ma, with the 95% confidence limit for the node ranging from 27-31 Ma. The LCA of extant platyrrhine monkeys based on substitution rate corrected by generation time and body size was established between 21-29 Ma. The estimates based on the two approaches used in this study recalibrate the ages of the major platyrrhine clades and corroborate the hypothesis that they constitute very old lineages. These results can help reconcile several controversial points concerning the affinities of key early Miocene fossils that have arisen among paleontologists and molecular systematists. However, they cannot resolve the controversy of whether these fossil species truly belong to the extant lineages or to a stem platyrrhine clade. That question can only be resolved by morphology. Finally, we show that the use of different approaches and well supported fossil information gives a more robust divergence time estimate of a clade.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/29519
url http://sedici.unlp.edu.ar/handle/10915/29519
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0068029
info:eu-repo/semantics/altIdentifier/issn/1932-6203
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0068029
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615833237585920
score 13.070432