Analysing definition questions by two machine learning approaches
- Autores
- López López, Aurelio; Martínez, Carmen
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In automatic question answering, the identification of the correct target term (i.e. the term to define) in a definition question is critical since if the target term is not correctly identified, then all subsequent modules have no chance of providing relevant nuggets. In this paper, we present a method to tag a question sentence experimenting with two learning approaches: QTag and Hidden Markov Model. We tested the methods in five collections of questions, PILOT, TREC 2003, TREC 2004, CLEF 2004 and CLEF 2005. We performed ten-fold cross validation for each collection and we also tested with all questions together. The best accuracy rates for each collection were obtained using QTag, but with all questions together the best accuracy rate is obtained using HMM.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Speech and Natural Language
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Question-answering (fact retrieval) systems
question sentence
tag
QTag
Hidden Markov Model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23918
Ver los metadatos del registro completo
id |
SEDICI_fc23773233488584d7a6e79e26f74deb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23918 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Analysing definition questions by two machine learning approachesLópez López, AurelioMartínez, CarmenCiencias InformáticasQuestion-answering (fact retrieval) systemsquestion sentencetagQTagHidden Markov ModelIn automatic question answering, the identification of the correct target term (i.e. the term to define) in a definition question is critical since if the target term is not correctly identified, then all subsequent modules have no chance of providing relevant nuggets. In this paper, we present a method to tag a question sentence experimenting with two learning approaches: QTag and Hidden Markov Model. We tested the methods in five collections of questions, PILOT, TREC 2003, TREC 2004, CLEF 2004 and CLEF 2005. We performed ten-fold cross validation for each collection and we also tested with all questions together. The best accuracy rates for each collection were obtained using QTag, but with all questions together the best accuracy rate is obtained using HMM.IFIP International Conference on Artificial Intelligence in Theory and Practice - Speech and Natural LanguageRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23918enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:25Zoai:sedici.unlp.edu.ar:10915/23918Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:26.062SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Analysing definition questions by two machine learning approaches |
title |
Analysing definition questions by two machine learning approaches |
spellingShingle |
Analysing definition questions by two machine learning approaches López López, Aurelio Ciencias Informáticas Question-answering (fact retrieval) systems question sentence tag QTag Hidden Markov Model |
title_short |
Analysing definition questions by two machine learning approaches |
title_full |
Analysing definition questions by two machine learning approaches |
title_fullStr |
Analysing definition questions by two machine learning approaches |
title_full_unstemmed |
Analysing definition questions by two machine learning approaches |
title_sort |
Analysing definition questions by two machine learning approaches |
dc.creator.none.fl_str_mv |
López López, Aurelio Martínez, Carmen |
author |
López López, Aurelio |
author_facet |
López López, Aurelio Martínez, Carmen |
author_role |
author |
author2 |
Martínez, Carmen |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Question-answering (fact retrieval) systems question sentence tag QTag Hidden Markov Model |
topic |
Ciencias Informáticas Question-answering (fact retrieval) systems question sentence tag QTag Hidden Markov Model |
dc.description.none.fl_txt_mv |
In automatic question answering, the identification of the correct target term (i.e. the term to define) in a definition question is critical since if the target term is not correctly identified, then all subsequent modules have no chance of providing relevant nuggets. In this paper, we present a method to tag a question sentence experimenting with two learning approaches: QTag and Hidden Markov Model. We tested the methods in five collections of questions, PILOT, TREC 2003, TREC 2004, CLEF 2004 and CLEF 2005. We performed ten-fold cross validation for each collection and we also tested with all questions together. The best accuracy rates for each collection were obtained using QTag, but with all questions together the best accuracy rate is obtained using HMM. IFIP International Conference on Artificial Intelligence in Theory and Practice - Speech and Natural Language Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In automatic question answering, the identification of the correct target term (i.e. the term to define) in a definition question is critical since if the target term is not correctly identified, then all subsequent modules have no chance of providing relevant nuggets. In this paper, we present a method to tag a question sentence experimenting with two learning approaches: QTag and Hidden Markov Model. We tested the methods in five collections of questions, PILOT, TREC 2003, TREC 2004, CLEF 2004 and CLEF 2005. We performed ten-fold cross validation for each collection and we also tested with all questions together. The best accuracy rates for each collection were obtained using QTag, but with all questions together the best accuracy rate is obtained using HMM. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23918 |
url |
http://sedici.unlp.edu.ar/handle/10915/23918 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260123349680128 |
score |
13.13397 |