Analysing definition questions by two machine learning approaches

Autores
López López, Aurelio; Martínez, Carmen
Año de publicación
2006
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In automatic question answering, the identification of the correct target term (i.e. the term to define) in a definition question is critical since if the target term is not correctly identified, then all subsequent modules have no chance of providing relevant nuggets. In this paper, we present a method to tag a question sentence experimenting with two learning approaches: QTag and Hidden Markov Model. We tested the methods in five collections of questions, PILOT, TREC 2003, TREC 2004, CLEF 2004 and CLEF 2005. We performed ten-fold cross validation for each collection and we also tested with all questions together. The best accuracy rates for each collection were obtained using QTag, but with all questions together the best accuracy rate is obtained using HMM.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Speech and Natural Language
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Question-answering (fact retrieval) systems
question sentence
tag
QTag
Hidden Markov Model
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23918

id SEDICI_fc23773233488584d7a6e79e26f74deb
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23918
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Analysing definition questions by two machine learning approachesLópez López, AurelioMartínez, CarmenCiencias InformáticasQuestion-answering (fact retrieval) systemsquestion sentencetagQTagHidden Markov ModelIn automatic question answering, the identification of the correct target term (i.e. the term to define) in a definition question is critical since if the target term is not correctly identified, then all subsequent modules have no chance of providing relevant nuggets. In this paper, we present a method to tag a question sentence experimenting with two learning approaches: QTag and Hidden Markov Model. We tested the methods in five collections of questions, PILOT, TREC 2003, TREC 2004, CLEF 2004 and CLEF 2005. We performed ten-fold cross validation for each collection and we also tested with all questions together. The best accuracy rates for each collection were obtained using QTag, but with all questions together the best accuracy rate is obtained using HMM.IFIP International Conference on Artificial Intelligence in Theory and Practice - Speech and Natural LanguageRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23918enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:25Zoai:sedici.unlp.edu.ar:10915/23918Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:26.062SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Analysing definition questions by two machine learning approaches
title Analysing definition questions by two machine learning approaches
spellingShingle Analysing definition questions by two machine learning approaches
López López, Aurelio
Ciencias Informáticas
Question-answering (fact retrieval) systems
question sentence
tag
QTag
Hidden Markov Model
title_short Analysing definition questions by two machine learning approaches
title_full Analysing definition questions by two machine learning approaches
title_fullStr Analysing definition questions by two machine learning approaches
title_full_unstemmed Analysing definition questions by two machine learning approaches
title_sort Analysing definition questions by two machine learning approaches
dc.creator.none.fl_str_mv López López, Aurelio
Martínez, Carmen
author López López, Aurelio
author_facet López López, Aurelio
Martínez, Carmen
author_role author
author2 Martínez, Carmen
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Question-answering (fact retrieval) systems
question sentence
tag
QTag
Hidden Markov Model
topic Ciencias Informáticas
Question-answering (fact retrieval) systems
question sentence
tag
QTag
Hidden Markov Model
dc.description.none.fl_txt_mv In automatic question answering, the identification of the correct target term (i.e. the term to define) in a definition question is critical since if the target term is not correctly identified, then all subsequent modules have no chance of providing relevant nuggets. In this paper, we present a method to tag a question sentence experimenting with two learning approaches: QTag and Hidden Markov Model. We tested the methods in five collections of questions, PILOT, TREC 2003, TREC 2004, CLEF 2004 and CLEF 2005. We performed ten-fold cross validation for each collection and we also tested with all questions together. The best accuracy rates for each collection were obtained using QTag, but with all questions together the best accuracy rate is obtained using HMM.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Speech and Natural Language
Red de Universidades con Carreras en Informática (RedUNCI)
description In automatic question answering, the identification of the correct target term (i.e. the term to define) in a definition question is critical since if the target term is not correctly identified, then all subsequent modules have no chance of providing relevant nuggets. In this paper, we present a method to tag a question sentence experimenting with two learning approaches: QTag and Hidden Markov Model. We tested the methods in five collections of questions, PILOT, TREC 2003, TREC 2004, CLEF 2004 and CLEF 2005. We performed ten-fold cross validation for each collection and we also tested with all questions together. The best accuracy rates for each collection were obtained using QTag, but with all questions together the best accuracy rate is obtained using HMM.
publishDate 2006
dc.date.none.fl_str_mv 2006-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23918
url http://sedici.unlp.edu.ar/handle/10915/23918
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260123349680128
score 13.13397