Recommending Buy/Sell in Brazilian Stock Market through Recurrent Neural Networks
- Autores
- Lopes Silva, Gabriel; Silva Camargo, Sandro da
- Año de publicación
- 2022
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This work aims to evaluate the accuracy of Long Short-Term Memory Neural Networks to recommend Buy/Sell signals of some Brazilian Stock Market Blue Chips. The population of this study was composed by top 5 volume stocks, which represented nearly 40% of the total volume of Brazilian Stock Market in 2019. It was analyzed the following features: volume traded, closing and opening price, maximum and minimum price, and last five-day closing prices. Models created can forecast the next day's opening or closing price. Obtained results show that forecasting and real values have a coefficient of determination (R²) from 0.91 to 0.99, depending on the stock.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Variable Income
Bovespa
Time Series
LSTM
Finance - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/151695
Ver los metadatos del registro completo
| id |
SEDICI_f7d944dd7907dac2f3ffcd956ebde41e |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/151695 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Recommending Buy/Sell in Brazilian Stock Market through Recurrent Neural NetworksLopes Silva, GabrielSilva Camargo, Sandro daCiencias InformáticasVariable IncomeBovespaTime SeriesLSTMFinanceThis work aims to evaluate the accuracy of Long Short-Term Memory Neural Networks to recommend Buy/Sell signals of some Brazilian Stock Market Blue Chips. The population of this study was composed by top 5 volume stocks, which represented nearly 40% of the total volume of Brazilian Stock Market in 2019. It was analyzed the following features: volume traded, closing and opening price, maximum and minimum price, and last five-day closing prices. Models created can forecast the next day's opening or closing price. Obtained results show that forecasting and real values have a coefficient of determination (R²) from 0.91 to 0.99, depending on the stock.Sociedad Argentina de Informática e Investigación Operativa2022-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf75-87http://sedici.unlp.edu.ar/handle/10915/151695spainfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/download/266/217info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:19:58Zoai:sedici.unlp.edu.ar:10915/151695Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:19:58.413SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Recommending Buy/Sell in Brazilian Stock Market through Recurrent Neural Networks |
| title |
Recommending Buy/Sell in Brazilian Stock Market through Recurrent Neural Networks |
| spellingShingle |
Recommending Buy/Sell in Brazilian Stock Market through Recurrent Neural Networks Lopes Silva, Gabriel Ciencias Informáticas Variable Income Bovespa Time Series LSTM Finance |
| title_short |
Recommending Buy/Sell in Brazilian Stock Market through Recurrent Neural Networks |
| title_full |
Recommending Buy/Sell in Brazilian Stock Market through Recurrent Neural Networks |
| title_fullStr |
Recommending Buy/Sell in Brazilian Stock Market through Recurrent Neural Networks |
| title_full_unstemmed |
Recommending Buy/Sell in Brazilian Stock Market through Recurrent Neural Networks |
| title_sort |
Recommending Buy/Sell in Brazilian Stock Market through Recurrent Neural Networks |
| dc.creator.none.fl_str_mv |
Lopes Silva, Gabriel Silva Camargo, Sandro da |
| author |
Lopes Silva, Gabriel |
| author_facet |
Lopes Silva, Gabriel Silva Camargo, Sandro da |
| author_role |
author |
| author2 |
Silva Camargo, Sandro da |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Variable Income Bovespa Time Series LSTM Finance |
| topic |
Ciencias Informáticas Variable Income Bovespa Time Series LSTM Finance |
| dc.description.none.fl_txt_mv |
This work aims to evaluate the accuracy of Long Short-Term Memory Neural Networks to recommend Buy/Sell signals of some Brazilian Stock Market Blue Chips. The population of this study was composed by top 5 volume stocks, which represented nearly 40% of the total volume of Brazilian Stock Market in 2019. It was analyzed the following features: volume traded, closing and opening price, maximum and minimum price, and last five-day closing prices. Models created can forecast the next day's opening or closing price. Obtained results show that forecasting and real values have a coefficient of determination (R²) from 0.91 to 0.99, depending on the stock. Sociedad Argentina de Informática e Investigación Operativa |
| description |
This work aims to evaluate the accuracy of Long Short-Term Memory Neural Networks to recommend Buy/Sell signals of some Brazilian Stock Market Blue Chips. The population of this study was composed by top 5 volume stocks, which represented nearly 40% of the total volume of Brazilian Stock Market in 2019. It was analyzed the following features: volume traded, closing and opening price, maximum and minimum price, and last five-day closing prices. Models created can forecast the next day's opening or closing price. Obtained results show that forecasting and real values have a coefficient of determination (R²) from 0.91 to 0.99, depending on the stock. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/151695 |
| url |
http://sedici.unlp.edu.ar/handle/10915/151695 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/download/266/217 info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 75-87 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783621471404032 |
| score |
12.982451 |