Descriptor based on spectraln peaks correlograms
- Autores
- Valdez Reyna, Brenda Lilia; Zivanovic, Miroslav
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We have presented in this report a new peak descriptor SD based on the lag plot and discussed its relationship to the NBD. The SD, defined as the slope of a linear regression model constructed through the data samples belonging to a time sequence, shows to be a good candidate for describing sinusoidal and noise peak classes. A proper choice of data set is crucial for discerning correctly between the peak classes. The SD makes use only of the spectral peak shape and consequently this information can be explained by just two parameters, namely the root mean square BWrms and absolute bandwidth L. This is similar to the way the shape factor explains the filter spectral shape in the circuit theory. We have shown that BWrms and L, initially defined in the spectrum domain, hold relationship to the time duration of the data set and its sampling rate respectively
VI Workshop Procesamiento de Señales y Sistemas de Tiempo Real (WPSTR)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Spectral methods
correlograma
lag plot - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/50546
Ver los metadatos del registro completo
| id |
SEDICI_f7849e7f3d6174a92f86e5e2f7f71be0 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/50546 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Descriptor based on spectraln peaks correlogramsValdez Reyna, Brenda LiliaZivanovic, MiroslavCiencias InformáticasSpectral methodscorrelogramalag plotWe have presented in this report a new peak descriptor SD based on the lag plot and discussed its relationship to the NBD. The SD, defined as the slope of a linear regression model constructed through the data samples belonging to a time sequence, shows to be a good candidate for describing sinusoidal and noise peak classes. A proper choice of data set is crucial for discerning correctly between the peak classes. The SD makes use only of the spectral peak shape and consequently this information can be explained by just two parameters, namely the root mean square BWrms and absolute bandwidth L. This is similar to the way the shape factor explains the filter spectral shape in the circuit theory. We have shown that BWrms and L, initially defined in the spectrum domain, hold relationship to the time duration of the data set and its sampling rate respectivelyVI Workshop Procesamiento de Señales y Sistemas de Tiempo Real (WPSTR)Red de Universidades con Carreras en Informática (RedUNCI)2015-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/50546enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-3806-05-6info:eu-repo/semantics/reference/hdl/10915/50028info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:45:29Zoai:sedici.unlp.edu.ar:10915/50546Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:45:29.868SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Descriptor based on spectraln peaks correlograms |
| title |
Descriptor based on spectraln peaks correlograms |
| spellingShingle |
Descriptor based on spectraln peaks correlograms Valdez Reyna, Brenda Lilia Ciencias Informáticas Spectral methods correlograma lag plot |
| title_short |
Descriptor based on spectraln peaks correlograms |
| title_full |
Descriptor based on spectraln peaks correlograms |
| title_fullStr |
Descriptor based on spectraln peaks correlograms |
| title_full_unstemmed |
Descriptor based on spectraln peaks correlograms |
| title_sort |
Descriptor based on spectraln peaks correlograms |
| dc.creator.none.fl_str_mv |
Valdez Reyna, Brenda Lilia Zivanovic, Miroslav |
| author |
Valdez Reyna, Brenda Lilia |
| author_facet |
Valdez Reyna, Brenda Lilia Zivanovic, Miroslav |
| author_role |
author |
| author2 |
Zivanovic, Miroslav |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Spectral methods correlograma lag plot |
| topic |
Ciencias Informáticas Spectral methods correlograma lag plot |
| dc.description.none.fl_txt_mv |
We have presented in this report a new peak descriptor SD based on the lag plot and discussed its relationship to the NBD. The SD, defined as the slope of a linear regression model constructed through the data samples belonging to a time sequence, shows to be a good candidate for describing sinusoidal and noise peak classes. A proper choice of data set is crucial for discerning correctly between the peak classes. The SD makes use only of the spectral peak shape and consequently this information can be explained by just two parameters, namely the root mean square BWrms and absolute bandwidth L. This is similar to the way the shape factor explains the filter spectral shape in the circuit theory. We have shown that BWrms and L, initially defined in the spectrum domain, hold relationship to the time duration of the data set and its sampling rate respectively VI Workshop Procesamiento de Señales y Sistemas de Tiempo Real (WPSTR) Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
We have presented in this report a new peak descriptor SD based on the lag plot and discussed its relationship to the NBD. The SD, defined as the slope of a linear regression model constructed through the data samples belonging to a time sequence, shows to be a good candidate for describing sinusoidal and noise peak classes. A proper choice of data set is crucial for discerning correctly between the peak classes. The SD makes use only of the spectral peak shape and consequently this information can be explained by just two parameters, namely the root mean square BWrms and absolute bandwidth L. This is similar to the way the shape factor explains the filter spectral shape in the circuit theory. We have shown that BWrms and L, initially defined in the spectrum domain, hold relationship to the time duration of the data set and its sampling rate respectively |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/50546 |
| url |
http://sedici.unlp.edu.ar/handle/10915/50546 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-3806-05-6 info:eu-repo/semantics/reference/hdl/10915/50028 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782972396568576 |
| score |
12.982451 |