A Knowledge Representation Example of a Fuzzy Database Implemented in PostgreSQL, with FIRST-2 and FSQL
- Autores
- Urrutia, Angélica; Galindo, José; Sepúlveda, Alejandro
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this article we present how to implement fuzzy databases based on the relational model. This approach includes many fuzzy attribute types, which can express the most of fuzzy knowledge types. These fuzzy attribute types include imprecise attributes, fuzzy attributes associated with one or more attributes, or with an independent meaning. In order to represent such fuzzy information we must study two aspects of fuzzy information: how to represent fuzzy data and how to represent fuzzy metaknowledge data. This second information is very important and it must be considered in any fuzzy database. This article studies the fuzzy metaknowledge data for any fuzzy attribute and how to represent both in a relational database. Finally, we apply all of this in a real example in the context of medical appointments.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Fuzzy relational databases
Fuzzy attributes
Fuzzy degrees
Fuzzy metaknowledge
Representation of Fuzzy Knowledge - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/152581
Ver los metadatos del registro completo
id |
SEDICI_f588520f1ee42b6ada9757af6f2c9838 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/152581 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A Knowledge Representation Example of a Fuzzy Database Implemented in PostgreSQL, with FIRST-2 and FSQLUrrutia, AngélicaGalindo, JoséSepúlveda, AlejandroCiencias InformáticasFuzzy relational databasesFuzzy attributesFuzzy degreesFuzzy metaknowledgeRepresentation of Fuzzy KnowledgeIn this article we present how to implement fuzzy databases based on the relational model. This approach includes many fuzzy attribute types, which can express the most of fuzzy knowledge types. These fuzzy attribute types include imprecise attributes, fuzzy attributes associated with one or more attributes, or with an independent meaning. In order to represent such fuzzy information we must study two aspects of fuzzy information: how to represent fuzzy data and how to represent fuzzy metaknowledge data. This second information is very important and it must be considered in any fuzzy database. This article studies the fuzzy metaknowledge data for any fuzzy attribute and how to represent both in a relational database. Finally, we apply all of this in a real example in the context of medical appointments.Sociedad Argentina de Informática e Investigación Operativa2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf37-47http://sedici.unlp.edu.ar/handle/10915/152581enginfo:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-asai-04.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:31:09Zoai:sedici.unlp.edu.ar:10915/152581Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:31:09.402SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A Knowledge Representation Example of a Fuzzy Database Implemented in PostgreSQL, with FIRST-2 and FSQL |
title |
A Knowledge Representation Example of a Fuzzy Database Implemented in PostgreSQL, with FIRST-2 and FSQL |
spellingShingle |
A Knowledge Representation Example of a Fuzzy Database Implemented in PostgreSQL, with FIRST-2 and FSQL Urrutia, Angélica Ciencias Informáticas Fuzzy relational databases Fuzzy attributes Fuzzy degrees Fuzzy metaknowledge Representation of Fuzzy Knowledge |
title_short |
A Knowledge Representation Example of a Fuzzy Database Implemented in PostgreSQL, with FIRST-2 and FSQL |
title_full |
A Knowledge Representation Example of a Fuzzy Database Implemented in PostgreSQL, with FIRST-2 and FSQL |
title_fullStr |
A Knowledge Representation Example of a Fuzzy Database Implemented in PostgreSQL, with FIRST-2 and FSQL |
title_full_unstemmed |
A Knowledge Representation Example of a Fuzzy Database Implemented in PostgreSQL, with FIRST-2 and FSQL |
title_sort |
A Knowledge Representation Example of a Fuzzy Database Implemented in PostgreSQL, with FIRST-2 and FSQL |
dc.creator.none.fl_str_mv |
Urrutia, Angélica Galindo, José Sepúlveda, Alejandro |
author |
Urrutia, Angélica |
author_facet |
Urrutia, Angélica Galindo, José Sepúlveda, Alejandro |
author_role |
author |
author2 |
Galindo, José Sepúlveda, Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Fuzzy relational databases Fuzzy attributes Fuzzy degrees Fuzzy metaknowledge Representation of Fuzzy Knowledge |
topic |
Ciencias Informáticas Fuzzy relational databases Fuzzy attributes Fuzzy degrees Fuzzy metaknowledge Representation of Fuzzy Knowledge |
dc.description.none.fl_txt_mv |
In this article we present how to implement fuzzy databases based on the relational model. This approach includes many fuzzy attribute types, which can express the most of fuzzy knowledge types. These fuzzy attribute types include imprecise attributes, fuzzy attributes associated with one or more attributes, or with an independent meaning. In order to represent such fuzzy information we must study two aspects of fuzzy information: how to represent fuzzy data and how to represent fuzzy metaknowledge data. This second information is very important and it must be considered in any fuzzy database. This article studies the fuzzy metaknowledge data for any fuzzy attribute and how to represent both in a relational database. Finally, we apply all of this in a real example in the context of medical appointments. Sociedad Argentina de Informática e Investigación Operativa |
description |
In this article we present how to implement fuzzy databases based on the relational model. This approach includes many fuzzy attribute types, which can express the most of fuzzy knowledge types. These fuzzy attribute types include imprecise attributes, fuzzy attributes associated with one or more attributes, or with an independent meaning. In order to represent such fuzzy information we must study two aspects of fuzzy information: how to represent fuzzy data and how to represent fuzzy metaknowledge data. This second information is very important and it must be considered in any fuzzy database. This article studies the fuzzy metaknowledge data for any fuzzy attribute and how to represent both in a relational database. Finally, we apply all of this in a real example in the context of medical appointments. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/152581 |
url |
http://sedici.unlp.edu.ar/handle/10915/152581 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-asai-04.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2784 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 37-47 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064348115501056 |
score |
13.22299 |