Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamien...
- Autores
- Cocconi, Diego; Yuan, Rebeca; Mulassano, Micaela; Ferreyra, Diego
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Con el objetivo de lograr identificar artefactos eléctricos utilizando redes neuronales a partir de una medida total de consumo de energía (técnica conocida como NILM, del inglés Non-Intrusive Load Monitoring), en el presente trabajo se plantea la evaluación de dos tipos de redes neuronales capaces de realizar tal tarea, contando como ejemplos de entrenamiento válidos para el aprendizaje con ciclos de activación de diferentes artefactos que ya fueron identificados por un algoritmo de detención desarrollado en trabajos anteriores.
Eje: Agentes y Sistemas Inteligentes.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Neural nets
NILM
Consumo de Energía
ciclos de activación
aprendizaje automático - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/76969
Ver los metadatos del registro completo
id |
SEDICI_f4b817d390f7f67007f39cb5a121482a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/76969 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamientoCocconi, DiegoYuan, RebecaMulassano, MicaelaFerreyra, DiegoCiencias InformáticasNeural netsNILMConsumo de Energíaciclos de activaciónaprendizaje automáticoCon el objetivo de lograr identificar artefactos eléctricos utilizando redes neuronales a partir de una medida total de consumo de energía (técnica conocida como NILM, del inglés Non-Intrusive Load Monitoring), en el presente trabajo se plantea la evaluación de dos tipos de redes neuronales capaces de realizar tal tarea, contando como ejemplos de entrenamiento válidos para el aprendizaje con ciclos de activación de diferentes artefactos que ya fueron identificados por un algoritmo de detención desarrollado en trabajos anteriores.Eje: Agentes y Sistemas Inteligentes.Red de Universidades con Carreras en Informática2019-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/76969spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-3984-85-3info:eu-repo/semantics/reference/hdl/10915/76941info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:05:35Zoai:sedici.unlp.edu.ar:10915/76969Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:05:36.008SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento |
title |
Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento |
spellingShingle |
Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento Cocconi, Diego Ciencias Informáticas Neural nets NILM Consumo de Energía ciclos de activación aprendizaje automático |
title_short |
Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento |
title_full |
Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento |
title_fullStr |
Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento |
title_full_unstemmed |
Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento |
title_sort |
Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento |
dc.creator.none.fl_str_mv |
Cocconi, Diego Yuan, Rebeca Mulassano, Micaela Ferreyra, Diego |
author |
Cocconi, Diego |
author_facet |
Cocconi, Diego Yuan, Rebeca Mulassano, Micaela Ferreyra, Diego |
author_role |
author |
author2 |
Yuan, Rebeca Mulassano, Micaela Ferreyra, Diego |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Neural nets NILM Consumo de Energía ciclos de activación aprendizaje automático |
topic |
Ciencias Informáticas Neural nets NILM Consumo de Energía ciclos de activación aprendizaje automático |
dc.description.none.fl_txt_mv |
Con el objetivo de lograr identificar artefactos eléctricos utilizando redes neuronales a partir de una medida total de consumo de energía (técnica conocida como NILM, del inglés Non-Intrusive Load Monitoring), en el presente trabajo se plantea la evaluación de dos tipos de redes neuronales capaces de realizar tal tarea, contando como ejemplos de entrenamiento válidos para el aprendizaje con ciclos de activación de diferentes artefactos que ya fueron identificados por un algoritmo de detención desarrollado en trabajos anteriores. Eje: Agentes y Sistemas Inteligentes. Red de Universidades con Carreras en Informática |
description |
Con el objetivo de lograr identificar artefactos eléctricos utilizando redes neuronales a partir de una medida total de consumo de energía (técnica conocida como NILM, del inglés Non-Intrusive Load Monitoring), en el presente trabajo se plantea la evaluación de dos tipos de redes neuronales capaces de realizar tal tarea, contando como ejemplos de entrenamiento válidos para el aprendizaje con ciclos de activación de diferentes artefactos que ya fueron identificados por un algoritmo de detención desarrollado en trabajos anteriores. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/76969 |
url |
http://sedici.unlp.edu.ar/handle/10915/76969 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-3984-85-3 info:eu-repo/semantics/reference/hdl/10915/76941 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064110682243072 |
score |
13.22299 |