Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods
- Autores
- Paniego, Juan Manuel; Libutti, Leandro Ariel; Pi Puig, Martín; Chichizola, Franco; De Giusti, Laura Cristina; Naiouf, Marcelo; De Giusti, Armando Eduardo
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Monitoring processor power is important to define strategies that allow reducing energy costs in computer systems. Today, processors have a large number of counters that allow monitoring system events such as CPU usage, memory, cache, and so forth. In previous works, it has been shown that parallel application consumption can be predicted through these events, but only for a given SBC board architecture. In this article, we analyze the portability of a power prediction statistical model on a new generation of Raspberry boards. Our experiments focus on the optimizations using different statistical methods so as to systematically reduce the final estimation error in the architectures analyzed. The final models yield an average error between 2.24% and 4.45%, increasing computational cost as the prediction error decreases.
Trabajo publicado en Pesado, P., Arroyo, M. (eds.). Computer Science – CACIC 2019. Communications in Computer and Information Science (CCIS), vol. 1184. Springer, Cham.
Instituto de Investigación en Informática
Comisión de Investigaciones Científicas de la provincia de Buenos Aires
Consejo Nacional de Investigaciones Científicas y Técnicas - Materia
-
Informática
Power
Raspberry Pi
Hardware counters
Modeling
Statistical models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/136167
Ver los metadatos del registro completo
id |
SEDICI_f46035b0eb91e7b8eb85b6aa379948dc |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/136167 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical MethodsPaniego, Juan ManuelLibutti, Leandro ArielPi Puig, MartínChichizola, FrancoDe Giusti, Laura CristinaNaiouf, MarceloDe Giusti, Armando EduardoInformáticaPowerRaspberry PiHardware countersModelingStatistical modelsMonitoring processor power is important to define strategies that allow reducing energy costs in computer systems. Today, processors have a large number of counters that allow monitoring system events such as CPU usage, memory, cache, and so forth. In previous works, it has been shown that parallel application consumption can be predicted through these events, but only for a given SBC board architecture. In this article, we analyze the portability of a power prediction statistical model on a new generation of Raspberry boards. Our experiments focus on the optimizations using different statistical methods so as to systematically reduce the final estimation error in the architectures analyzed. The final models yield an average error between 2.24% and 4.45%, increasing computational cost as the prediction error decreases.Trabajo publicado en Pesado, P., Arroyo, M. (eds.). Computer Science – CACIC 2019. Communications in Computer and Information Science (CCIS), vol. 1184. Springer, Cham.Instituto de Investigación en InformáticaComisión de Investigaciones Científicas de la provincia de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas2019info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf53-65http://sedici.unlp.edu.ar/handle/10915/136167spainfo:eu-repo/semantics/altIdentifier/isbn/978-3-030-48325-8info:eu-repo/semantics/altIdentifier/issn/1865-0929info:eu-repo/semantics/altIdentifier/issn/1865-0937info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-48325-8_4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:04:23Zoai:sedici.unlp.edu.ar:10915/136167Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:04:23.46SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods |
title |
Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods |
spellingShingle |
Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods Paniego, Juan Manuel Informática Power Raspberry Pi Hardware counters Modeling Statistical models |
title_short |
Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods |
title_full |
Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods |
title_fullStr |
Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods |
title_full_unstemmed |
Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods |
title_sort |
Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods |
dc.creator.none.fl_str_mv |
Paniego, Juan Manuel Libutti, Leandro Ariel Pi Puig, Martín Chichizola, Franco De Giusti, Laura Cristina Naiouf, Marcelo De Giusti, Armando Eduardo |
author |
Paniego, Juan Manuel |
author_facet |
Paniego, Juan Manuel Libutti, Leandro Ariel Pi Puig, Martín Chichizola, Franco De Giusti, Laura Cristina Naiouf, Marcelo De Giusti, Armando Eduardo |
author_role |
author |
author2 |
Libutti, Leandro Ariel Pi Puig, Martín Chichizola, Franco De Giusti, Laura Cristina Naiouf, Marcelo De Giusti, Armando Eduardo |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Informática Power Raspberry Pi Hardware counters Modeling Statistical models |
topic |
Informática Power Raspberry Pi Hardware counters Modeling Statistical models |
dc.description.none.fl_txt_mv |
Monitoring processor power is important to define strategies that allow reducing energy costs in computer systems. Today, processors have a large number of counters that allow monitoring system events such as CPU usage, memory, cache, and so forth. In previous works, it has been shown that parallel application consumption can be predicted through these events, but only for a given SBC board architecture. In this article, we analyze the portability of a power prediction statistical model on a new generation of Raspberry boards. Our experiments focus on the optimizations using different statistical methods so as to systematically reduce the final estimation error in the architectures analyzed. The final models yield an average error between 2.24% and 4.45%, increasing computational cost as the prediction error decreases. Trabajo publicado en Pesado, P., Arroyo, M. (eds.). Computer Science – CACIC 2019. Communications in Computer and Information Science (CCIS), vol. 1184. Springer, Cham. Instituto de Investigación en Informática Comisión de Investigaciones Científicas de la provincia de Buenos Aires Consejo Nacional de Investigaciones Científicas y Técnicas |
description |
Monitoring processor power is important to define strategies that allow reducing energy costs in computer systems. Today, processors have a large number of counters that allow monitoring system events such as CPU usage, memory, cache, and so forth. In previous works, it has been shown that parallel application consumption can be predicted through these events, but only for a given SBC board architecture. In this article, we analyze the portability of a power prediction statistical model on a new generation of Raspberry boards. Our experiments focus on the optimizations using different statistical methods so as to systematically reduce the final estimation error in the architectures analyzed. The final models yield an average error between 2.24% and 4.45%, increasing computational cost as the prediction error decreases. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/136167 |
url |
http://sedici.unlp.edu.ar/handle/10915/136167 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-3-030-48325-8 info:eu-repo/semantics/altIdentifier/issn/1865-0929 info:eu-repo/semantics/altIdentifier/issn/1865-0937 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-48325-8_4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 53-65 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260542353309696 |
score |
13.13397 |