Runaway massive stars as variable gamma-ray sources

Autores
Valle, María Victoria del; Romero, Gustavo Esteban
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Runaway stars are ejected from their formation sites well within molecular cores in giant dark clouds. Eventually, these stars can travel through the molecular clouds, which are highly inhomogeneous. The powerful winds of massive runaway stars interact with the medium forming bowshocks. Recent observations and theoretical modelling suggest that these bowshocks emit non-thermal radiation. As the massive stars move through the inhomogeneous ambient gas the physical properties of the bowshocks are modified, producing changes in the non-thermal emission. We aim to compute the non-thermal radiation produced in the bowshocks of runaway massive stars when travelling through a molecular cloud. We calculate the non-thermal emission and absorption for two types of massive runaway stars, an O9I and an O4I, as they move through a density gradient. We present the spectral energy distributions for the runaway stars modelled. Additionally, we obtain light curves at different energy ranges. We find significant variations in the emission over timescales of $\sim$ 1 yr. We conclude that bowshocks of massive runaway stars, under some assumptions, might be variable gamma-ray sources, with variability timescales that depend on the medium density profile. These objects might constitute a population of galactic gamma-ray sources turning on and off within years.
Instituto Argentino de Radioastronomía
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Stars: massive
Gamma rays: stars
Radiation mechanisms: non-thermal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/123332

id SEDICI_f401d594682be75636e619a679135d33
oai_identifier_str oai:sedici.unlp.edu.ar:10915/123332
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Runaway massive stars as variable gamma-ray sourcesValle, María Victoria delRomero, Gustavo EstebanCiencias AstronómicasStars: massiveGamma rays: starsRadiation mechanisms: non-thermalRunaway stars are ejected from their formation sites well within molecular cores in giant dark clouds. Eventually, these stars can travel through the molecular clouds, which are highly inhomogeneous. The powerful winds of massive runaway stars interact with the medium forming bowshocks. Recent observations and theoretical modelling suggest that these bowshocks emit non-thermal radiation. As the massive stars move through the inhomogeneous ambient gas the physical properties of the bowshocks are modified, producing changes in the non-thermal emission. We aim to compute the non-thermal radiation produced in the bowshocks of runaway massive stars when travelling through a molecular cloud. We calculate the non-thermal emission and absorption for two types of massive runaway stars, an O9I and an O4I, as they move through a density gradient. We present the spectral energy distributions for the runaway stars modelled. Additionally, we obtain light curves at different energy ranges. We find significant variations in the emission over timescales of $\sim$ 1 yr. We conclude that bowshocks of massive runaway stars, under some assumptions, might be variable gamma-ray sources, with variability timescales that depend on the medium density profile. These objects might constitute a population of galactic gamma-ray sources turning on and off within years.Instituto Argentino de RadioastronomíaFacultad de Ciencias Astronómicas y Geofísicas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/123332enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/issn/1432-0746info:eu-repo/semantics/altIdentifier/arxiv/1401.3255info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201322308info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:21:23Zoai:sedici.unlp.edu.ar:10915/123332Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:21:23.432SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Runaway massive stars as variable gamma-ray sources
title Runaway massive stars as variable gamma-ray sources
spellingShingle Runaway massive stars as variable gamma-ray sources
Valle, María Victoria del
Ciencias Astronómicas
Stars: massive
Gamma rays: stars
Radiation mechanisms: non-thermal
title_short Runaway massive stars as variable gamma-ray sources
title_full Runaway massive stars as variable gamma-ray sources
title_fullStr Runaway massive stars as variable gamma-ray sources
title_full_unstemmed Runaway massive stars as variable gamma-ray sources
title_sort Runaway massive stars as variable gamma-ray sources
dc.creator.none.fl_str_mv Valle, María Victoria del
Romero, Gustavo Esteban
author Valle, María Victoria del
author_facet Valle, María Victoria del
Romero, Gustavo Esteban
author_role author
author2 Romero, Gustavo Esteban
author2_role author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Stars: massive
Gamma rays: stars
Radiation mechanisms: non-thermal
topic Ciencias Astronómicas
Stars: massive
Gamma rays: stars
Radiation mechanisms: non-thermal
dc.description.none.fl_txt_mv Runaway stars are ejected from their formation sites well within molecular cores in giant dark clouds. Eventually, these stars can travel through the molecular clouds, which are highly inhomogeneous. The powerful winds of massive runaway stars interact with the medium forming bowshocks. Recent observations and theoretical modelling suggest that these bowshocks emit non-thermal radiation. As the massive stars move through the inhomogeneous ambient gas the physical properties of the bowshocks are modified, producing changes in the non-thermal emission. We aim to compute the non-thermal radiation produced in the bowshocks of runaway massive stars when travelling through a molecular cloud. We calculate the non-thermal emission and absorption for two types of massive runaway stars, an O9I and an O4I, as they move through a density gradient. We present the spectral energy distributions for the runaway stars modelled. Additionally, we obtain light curves at different energy ranges. We find significant variations in the emission over timescales of $\sim$ 1 yr. We conclude that bowshocks of massive runaway stars, under some assumptions, might be variable gamma-ray sources, with variability timescales that depend on the medium density profile. These objects might constitute a population of galactic gamma-ray sources turning on and off within years.
Instituto Argentino de Radioastronomía
Facultad de Ciencias Astronómicas y Geofísicas
description Runaway stars are ejected from their formation sites well within molecular cores in giant dark clouds. Eventually, these stars can travel through the molecular clouds, which are highly inhomogeneous. The powerful winds of massive runaway stars interact with the medium forming bowshocks. Recent observations and theoretical modelling suggest that these bowshocks emit non-thermal radiation. As the massive stars move through the inhomogeneous ambient gas the physical properties of the bowshocks are modified, producing changes in the non-thermal emission. We aim to compute the non-thermal radiation produced in the bowshocks of runaway massive stars when travelling through a molecular cloud. We calculate the non-thermal emission and absorption for two types of massive runaway stars, an O9I and an O4I, as they move through a density gradient. We present the spectral energy distributions for the runaway stars modelled. Additionally, we obtain light curves at different energy ranges. We find significant variations in the emission over timescales of $\sim$ 1 yr. We conclude that bowshocks of massive runaway stars, under some assumptions, might be variable gamma-ray sources, with variability timescales that depend on the medium density profile. These objects might constitute a population of galactic gamma-ray sources turning on and off within years.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/123332
url http://sedici.unlp.edu.ar/handle/10915/123332
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/issn/1432-0746
info:eu-repo/semantics/altIdentifier/arxiv/1401.3255
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201322308
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064270722203648
score 12.891075