Molecular gas and star formation toward the IR dust bubble S 24 and its environs

Autores
Cappa, Cristina Elisabet; Duronea, Nicolás Urbano; Firpo, Verónica; Vasquez, Javier; López Caraballo, C. E.; Rubio, Mónica; Vazzano, María Mercedes
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Aims. We present a multiwavelength analysis of the infrared dust bubble S 24 and the extended IR sources G341.220-0.213 and G341.217-0.237 located in its environs. We aim to investigate the characteristics of the molecular gas and the interstellar dust linked to them and analyze the evolutionary state of the young stellar objects identified there and the relation of the bubble to S 24 and the IR sources. Methods. Using the APEX telescope, we mapped the molecular emission in the CO(2-1), 13CO(2-1), C18O(2-1), and 13CO(3-2) lines in a region of about 5′ × 5′ in size around the bubble. The cold dust distribution was analyzed using submillimeter continuum images from ATLASGAL and Herschel. Complementary IR and radio data at different wavelengths were used to complete the study of the interstellar medium in the region. Results. The molecular gas distribution shows that gas linked to the S 24 bubble and to G341.220-0.213 and G341.217-0.237 has velocities of between -48.0 km s-1 and -40.0 km s-1, compatible with the kinematical distance of 3.7 kpc that is generally adopted for the region. The gas distribution reveals a shell-like molecular structure of ∼0.8 pc in radius bordering the S 24 bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel-SPIRE images. The weak extended emission at 24 μm from warm dust and radio continuum emission projected inside the bubble indicates exciting sources and that the bubble is a compact Hii region. Part of the molecular gas bordering the S 24 Hii region coincides with the extended infrared dust cloud SDC341.194-0.221. A molecular and cold dust clump is present at the interface between the S 24 Hii region and G341.217-0.237, shaping the eastern border of the IR bubble. The arc-like molecular structure encircling the northern and eastern sections of the IR source G341.220-0.213 indicates that the source is interacting with the molecular gas. The analysis of the available IR point source catalogs reveals some young stellar object candidates linked to the IR-extended sources, thus confirming their nature as active star-forming regions. Gas and dust masses were estimated for the different features. The total gas mass in the region and the H2 ambient density amount to 10 300 M⊙ and 5900 cm-3, indicating that G341.220-0.213, G341.217-0.237, and the S 24 Hii region are evolving in a high-densit © ESO, 2015.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Hii regions
ISM: molecules
Molecular data
Submillimeter: ISM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/86096

id SEDICI_f1d7af3be82ab46553f4f65c251f31ef
oai_identifier_str oai:sedici.unlp.edu.ar:10915/86096
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Molecular gas and star formation toward the IR dust bubble S 24 and its environsCappa, Cristina ElisabetDuronea, Nicolás UrbanoFirpo, VerónicaVasquez, JavierLópez Caraballo, C. E.Rubio, MónicaVazzano, María MercedesCiencias AstronómicasHii regionsISM: moleculesMolecular dataSubmillimeter: ISMAims. We present a multiwavelength analysis of the infrared dust bubble S 24 and the extended IR sources G341.220-0.213 and G341.217-0.237 located in its environs. We aim to investigate the characteristics of the molecular gas and the interstellar dust linked to them and analyze the evolutionary state of the young stellar objects identified there and the relation of the bubble to S 24 and the IR sources. Methods. Using the APEX telescope, we mapped the molecular emission in the CO(2-1), 13CO(2-1), C18O(2-1), and 13CO(3-2) lines in a region of about 5′ × 5′ in size around the bubble. The cold dust distribution was analyzed using submillimeter continuum images from ATLASGAL and Herschel. Complementary IR and radio data at different wavelengths were used to complete the study of the interstellar medium in the region. Results. The molecular gas distribution shows that gas linked to the S 24 bubble and to G341.220-0.213 and G341.217-0.237 has velocities of between -48.0 km s-1 and -40.0 km s-1, compatible with the kinematical distance of 3.7 kpc that is generally adopted for the region. The gas distribution reveals a shell-like molecular structure of ∼0.8 pc in radius bordering the S 24 bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel-SPIRE images. The weak extended emission at 24 μm from warm dust and radio continuum emission projected inside the bubble indicates exciting sources and that the bubble is a compact Hii region. Part of the molecular gas bordering the S 24 Hii region coincides with the extended infrared dust cloud SDC341.194-0.221. A molecular and cold dust clump is present at the interface between the S 24 Hii region and G341.217-0.237, shaping the eastern border of the IR bubble. The arc-like molecular structure encircling the northern and eastern sections of the IR source G341.220-0.213 indicates that the source is interacting with the molecular gas. The analysis of the available IR point source catalogs reveals some young stellar object candidates linked to the IR-extended sources, thus confirming their nature as active star-forming regions. Gas and dust masses were estimated for the different features. The total gas mass in the region and the H2 ambient density amount to 10 300 M⊙ and 5900 cm-3, indicating that G341.220-0.213, G341.217-0.237, and the S 24 Hii region are evolving in a high-densit © ESO, 2015.Facultad de Ciencias Astronómicas y Geofísicas2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/86096enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201525949info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:50Zoai:sedici.unlp.edu.ar:10915/86096Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:50.607SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Molecular gas and star formation toward the IR dust bubble S 24 and its environs
title Molecular gas and star formation toward the IR dust bubble S 24 and its environs
spellingShingle Molecular gas and star formation toward the IR dust bubble S 24 and its environs
Cappa, Cristina Elisabet
Ciencias Astronómicas
Hii regions
ISM: molecules
Molecular data
Submillimeter: ISM
title_short Molecular gas and star formation toward the IR dust bubble S 24 and its environs
title_full Molecular gas and star formation toward the IR dust bubble S 24 and its environs
title_fullStr Molecular gas and star formation toward the IR dust bubble S 24 and its environs
title_full_unstemmed Molecular gas and star formation toward the IR dust bubble S 24 and its environs
title_sort Molecular gas and star formation toward the IR dust bubble S 24 and its environs
dc.creator.none.fl_str_mv Cappa, Cristina Elisabet
Duronea, Nicolás Urbano
Firpo, Verónica
Vasquez, Javier
López Caraballo, C. E.
Rubio, Mónica
Vazzano, María Mercedes
author Cappa, Cristina Elisabet
author_facet Cappa, Cristina Elisabet
Duronea, Nicolás Urbano
Firpo, Verónica
Vasquez, Javier
López Caraballo, C. E.
Rubio, Mónica
Vazzano, María Mercedes
author_role author
author2 Duronea, Nicolás Urbano
Firpo, Verónica
Vasquez, Javier
López Caraballo, C. E.
Rubio, Mónica
Vazzano, María Mercedes
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Hii regions
ISM: molecules
Molecular data
Submillimeter: ISM
topic Ciencias Astronómicas
Hii regions
ISM: molecules
Molecular data
Submillimeter: ISM
dc.description.none.fl_txt_mv Aims. We present a multiwavelength analysis of the infrared dust bubble S 24 and the extended IR sources G341.220-0.213 and G341.217-0.237 located in its environs. We aim to investigate the characteristics of the molecular gas and the interstellar dust linked to them and analyze the evolutionary state of the young stellar objects identified there and the relation of the bubble to S 24 and the IR sources. Methods. Using the APEX telescope, we mapped the molecular emission in the CO(2-1), 13CO(2-1), C18O(2-1), and 13CO(3-2) lines in a region of about 5′ × 5′ in size around the bubble. The cold dust distribution was analyzed using submillimeter continuum images from ATLASGAL and Herschel. Complementary IR and radio data at different wavelengths were used to complete the study of the interstellar medium in the region. Results. The molecular gas distribution shows that gas linked to the S 24 bubble and to G341.220-0.213 and G341.217-0.237 has velocities of between -48.0 km s-1 and -40.0 km s-1, compatible with the kinematical distance of 3.7 kpc that is generally adopted for the region. The gas distribution reveals a shell-like molecular structure of ∼0.8 pc in radius bordering the S 24 bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel-SPIRE images. The weak extended emission at 24 μm from warm dust and radio continuum emission projected inside the bubble indicates exciting sources and that the bubble is a compact Hii region. Part of the molecular gas bordering the S 24 Hii region coincides with the extended infrared dust cloud SDC341.194-0.221. A molecular and cold dust clump is present at the interface between the S 24 Hii region and G341.217-0.237, shaping the eastern border of the IR bubble. The arc-like molecular structure encircling the northern and eastern sections of the IR source G341.220-0.213 indicates that the source is interacting with the molecular gas. The analysis of the available IR point source catalogs reveals some young stellar object candidates linked to the IR-extended sources, thus confirming their nature as active star-forming regions. Gas and dust masses were estimated for the different features. The total gas mass in the region and the H2 ambient density amount to 10 300 M⊙ and 5900 cm-3, indicating that G341.220-0.213, G341.217-0.237, and the S 24 Hii region are evolving in a high-densit © ESO, 2015.
Facultad de Ciencias Astronómicas y Geofísicas
description Aims. We present a multiwavelength analysis of the infrared dust bubble S 24 and the extended IR sources G341.220-0.213 and G341.217-0.237 located in its environs. We aim to investigate the characteristics of the molecular gas and the interstellar dust linked to them and analyze the evolutionary state of the young stellar objects identified there and the relation of the bubble to S 24 and the IR sources. Methods. Using the APEX telescope, we mapped the molecular emission in the CO(2-1), 13CO(2-1), C18O(2-1), and 13CO(3-2) lines in a region of about 5′ × 5′ in size around the bubble. The cold dust distribution was analyzed using submillimeter continuum images from ATLASGAL and Herschel. Complementary IR and radio data at different wavelengths were used to complete the study of the interstellar medium in the region. Results. The molecular gas distribution shows that gas linked to the S 24 bubble and to G341.220-0.213 and G341.217-0.237 has velocities of between -48.0 km s-1 and -40.0 km s-1, compatible with the kinematical distance of 3.7 kpc that is generally adopted for the region. The gas distribution reveals a shell-like molecular structure of ∼0.8 pc in radius bordering the S 24 bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel-SPIRE images. The weak extended emission at 24 μm from warm dust and radio continuum emission projected inside the bubble indicates exciting sources and that the bubble is a compact Hii region. Part of the molecular gas bordering the S 24 Hii region coincides with the extended infrared dust cloud SDC341.194-0.221. A molecular and cold dust clump is present at the interface between the S 24 Hii region and G341.217-0.237, shaping the eastern border of the IR bubble. The arc-like molecular structure encircling the northern and eastern sections of the IR source G341.220-0.213 indicates that the source is interacting with the molecular gas. The analysis of the available IR point source catalogs reveals some young stellar object candidates linked to the IR-extended sources, thus confirming their nature as active star-forming regions. Gas and dust masses were estimated for the different features. The total gas mass in the region and the H2 ambient density amount to 10 300 M⊙ and 5900 cm-3, indicating that G341.220-0.213, G341.217-0.237, and the S 24 Hii region are evolving in a high-densit © ESO, 2015.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/86096
url http://sedici.unlp.edu.ar/handle/10915/86096
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201525949
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616041335881728
score 13.070432