Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions

Autores
Puente, Cristina; Sáenz Nuño, María; Villa Monte, Augusto; Olivas Varela, José Ángel
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The number of satellites and debris in space is dangerously increasing through the years. For that reason, it is mandatory to design techniques to approach the position of a given object at a given time. In this paper, we present a system to do so based on a database of satellite positions according to their coordinates (x,y,z) for one month. We have paid special emphasis on the preliminary stage of data arrangement, since if we do not have consistent data, the results we will obtain will be useless, so the first stage of this work is a full study of the information gathered locating the missing gaps of data and covering them with a prediction. With that information, we are able to calculate an orbit error which will estimate the position of a satellite in time, even when the information is not accurate, by means of prediction of the satellite’s position. The comparison of two satellites over 26 days will serve to highlight the importance of the accuracy in the data, provoking in some cases an estimated error of 4% if the data are not well measured.
Instituto de Investigación en Informática
Materia
Ciencias Informáticas
Informática
orbit prediction
error position estimation
debris
data accuracy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/125418

id SEDICI_f0db6611a351ac701bd0493301891949
oai_identifier_str oai:sedici.unlp.edu.ar:10915/125418
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space CollisionsPuente, CristinaSáenz Nuño, MaríaVilla Monte, AugustoOlivas Varela, José ÁngelCiencias InformáticasInformáticaorbit predictionerror position estimationdebrisdata accuracyThe number of satellites and debris in space is dangerously increasing through the years. For that reason, it is mandatory to design techniques to approach the position of a given object at a given time. In this paper, we present a system to do so based on a database of satellite positions according to their coordinates (x,y,z) for one month. We have paid special emphasis on the preliminary stage of data arrangement, since if we do not have consistent data, the results we will obtain will be useless, so the first stage of this work is a full study of the information gathered locating the missing gaps of data and covering them with a prediction. With that information, we are able to calculate an orbit error which will estimate the position of a satellite in time, even when the information is not accurate, by means of prediction of the satellite’s position. The comparison of two satellites over 26 days will serve to highlight the importance of the accuracy in the data, provoking in some cases an estimated error of 4% if the data are not well measured.Instituto de Investigación en Informática2021-08-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/125418enginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/9/17/2040info:eu-repo/semantics/altIdentifier/issn/2227-7390info:eu-repo/semantics/altIdentifier/doi/10.3390/math9172040info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:21:56Zoai:sedici.unlp.edu.ar:10915/125418Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:21:56.569SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions
title Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions
spellingShingle Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions
Puente, Cristina
Ciencias Informáticas
Informática
orbit prediction
error position estimation
debris
data accuracy
title_short Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions
title_full Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions
title_fullStr Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions
title_full_unstemmed Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions
title_sort Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions
dc.creator.none.fl_str_mv Puente, Cristina
Sáenz Nuño, María
Villa Monte, Augusto
Olivas Varela, José Ángel
author Puente, Cristina
author_facet Puente, Cristina
Sáenz Nuño, María
Villa Monte, Augusto
Olivas Varela, José Ángel
author_role author
author2 Sáenz Nuño, María
Villa Monte, Augusto
Olivas Varela, José Ángel
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Informática
orbit prediction
error position estimation
debris
data accuracy
topic Ciencias Informáticas
Informática
orbit prediction
error position estimation
debris
data accuracy
dc.description.none.fl_txt_mv The number of satellites and debris in space is dangerously increasing through the years. For that reason, it is mandatory to design techniques to approach the position of a given object at a given time. In this paper, we present a system to do so based on a database of satellite positions according to their coordinates (x,y,z) for one month. We have paid special emphasis on the preliminary stage of data arrangement, since if we do not have consistent data, the results we will obtain will be useless, so the first stage of this work is a full study of the information gathered locating the missing gaps of data and covering them with a prediction. With that information, we are able to calculate an orbit error which will estimate the position of a satellite in time, even when the information is not accurate, by means of prediction of the satellite’s position. The comparison of two satellites over 26 days will serve to highlight the importance of the accuracy in the data, provoking in some cases an estimated error of 4% if the data are not well measured.
Instituto de Investigación en Informática
description The number of satellites and debris in space is dangerously increasing through the years. For that reason, it is mandatory to design techniques to approach the position of a given object at a given time. In this paper, we present a system to do so based on a database of satellite positions according to their coordinates (x,y,z) for one month. We have paid special emphasis on the preliminary stage of data arrangement, since if we do not have consistent data, the results we will obtain will be useless, so the first stage of this work is a full study of the information gathered locating the missing gaps of data and covering them with a prediction. With that information, we are able to calculate an orbit error which will estimate the position of a satellite in time, even when the information is not accurate, by means of prediction of the satellite’s position. The comparison of two satellites over 26 days will serve to highlight the importance of the accuracy in the data, provoking in some cases an estimated error of 4% if the data are not well measured.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/125418
url http://sedici.unlp.edu.ar/handle/10915/125418
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/9/17/2040
info:eu-repo/semantics/altIdentifier/issn/2227-7390
info:eu-repo/semantics/altIdentifier/doi/10.3390/math9172040
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064275630587904
score 12.891075