Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions
- Autores
- Puente, Cristina; Sáenz Nuño, María; Villa Monte, Augusto; Olivas Varela, José Ángel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The number of satellites and debris in space is dangerously increasing through the years. For that reason, it is mandatory to design techniques to approach the position of a given object at a given time. In this paper, we present a system to do so based on a database of satellite positions according to their coordinates (x,y,z) for one month. We have paid special emphasis on the preliminary stage of data arrangement, since if we do not have consistent data, the results we will obtain will be useless, so the first stage of this work is a full study of the information gathered locating the missing gaps of data and covering them with a prediction. With that information, we are able to calculate an orbit error which will estimate the position of a satellite in time, even when the information is not accurate, by means of prediction of the satellite’s position. The comparison of two satellites over 26 days will serve to highlight the importance of the accuracy in the data, provoking in some cases an estimated error of 4% if the data are not well measured.
Instituto de Investigación en Informática - Materia
-
Ciencias Informáticas
Informática
orbit prediction
error position estimation
debris
data accuracy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125418
Ver los metadatos del registro completo
id |
SEDICI_f0db6611a351ac701bd0493301891949 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125418 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space CollisionsPuente, CristinaSáenz Nuño, MaríaVilla Monte, AugustoOlivas Varela, José ÁngelCiencias InformáticasInformáticaorbit predictionerror position estimationdebrisdata accuracyThe number of satellites and debris in space is dangerously increasing through the years. For that reason, it is mandatory to design techniques to approach the position of a given object at a given time. In this paper, we present a system to do so based on a database of satellite positions according to their coordinates (x,y,z) for one month. We have paid special emphasis on the preliminary stage of data arrangement, since if we do not have consistent data, the results we will obtain will be useless, so the first stage of this work is a full study of the information gathered locating the missing gaps of data and covering them with a prediction. With that information, we are able to calculate an orbit error which will estimate the position of a satellite in time, even when the information is not accurate, by means of prediction of the satellite’s position. The comparison of two satellites over 26 days will serve to highlight the importance of the accuracy in the data, provoking in some cases an estimated error of 4% if the data are not well measured.Instituto de Investigación en Informática2021-08-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/125418enginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/9/17/2040info:eu-repo/semantics/altIdentifier/issn/2227-7390info:eu-repo/semantics/altIdentifier/doi/10.3390/math9172040info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:21:56Zoai:sedici.unlp.edu.ar:10915/125418Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:21:56.569SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions |
title |
Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions |
spellingShingle |
Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions Puente, Cristina Ciencias Informáticas Informática orbit prediction error position estimation debris data accuracy |
title_short |
Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions |
title_full |
Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions |
title_fullStr |
Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions |
title_full_unstemmed |
Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions |
title_sort |
Satellite Orbit Prediction Using Big Data and Soft Computing Techniques to Avoid Space Collisions |
dc.creator.none.fl_str_mv |
Puente, Cristina Sáenz Nuño, María Villa Monte, Augusto Olivas Varela, José Ángel |
author |
Puente, Cristina |
author_facet |
Puente, Cristina Sáenz Nuño, María Villa Monte, Augusto Olivas Varela, José Ángel |
author_role |
author |
author2 |
Sáenz Nuño, María Villa Monte, Augusto Olivas Varela, José Ángel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Informática orbit prediction error position estimation debris data accuracy |
topic |
Ciencias Informáticas Informática orbit prediction error position estimation debris data accuracy |
dc.description.none.fl_txt_mv |
The number of satellites and debris in space is dangerously increasing through the years. For that reason, it is mandatory to design techniques to approach the position of a given object at a given time. In this paper, we present a system to do so based on a database of satellite positions according to their coordinates (x,y,z) for one month. We have paid special emphasis on the preliminary stage of data arrangement, since if we do not have consistent data, the results we will obtain will be useless, so the first stage of this work is a full study of the information gathered locating the missing gaps of data and covering them with a prediction. With that information, we are able to calculate an orbit error which will estimate the position of a satellite in time, even when the information is not accurate, by means of prediction of the satellite’s position. The comparison of two satellites over 26 days will serve to highlight the importance of the accuracy in the data, provoking in some cases an estimated error of 4% if the data are not well measured. Instituto de Investigación en Informática |
description |
The number of satellites and debris in space is dangerously increasing through the years. For that reason, it is mandatory to design techniques to approach the position of a given object at a given time. In this paper, we present a system to do so based on a database of satellite positions according to their coordinates (x,y,z) for one month. We have paid special emphasis on the preliminary stage of data arrangement, since if we do not have consistent data, the results we will obtain will be useless, so the first stage of this work is a full study of the information gathered locating the missing gaps of data and covering them with a prediction. With that information, we are able to calculate an orbit error which will estimate the position of a satellite in time, even when the information is not accurate, by means of prediction of the satellite’s position. The comparison of two satellites over 26 days will serve to highlight the importance of the accuracy in the data, provoking in some cases an estimated error of 4% if the data are not well measured. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-25 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125418 |
url |
http://sedici.unlp.edu.ar/handle/10915/125418 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/9/17/2040 info:eu-repo/semantics/altIdentifier/issn/2227-7390 info:eu-repo/semantics/altIdentifier/doi/10.3390/math9172040 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064275630587904 |
score |
12.891075 |