Paleo-landscapes of the Northern Patagonian Massif, Argentina
- Autores
- Aguilera, Emilia Yolanda; Rabassa, Jorge Oscar; Aragón, Eugenio; Jorge Rabassa; Cliff Ollier
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- The dominant geomorphological unit of the Northern Patagonian Massif landscape is a regional planation surface, eroded across the crystalline basement (plutonic and metamorphic rocks), eruptive rocks of the Gondwana cycle (Early to Middle Carboniferous), and Jurassic volcanic rocks. The most important active climate during the genesis of this surface had a very significant role, developing intense chemical weathering extending to variable depths with the corresponding degradation of the rocky material exposed at the surface. Remnants of the weathering profiles, both outcropping and fossilized by burial, are identified and described. Such a particular mega-landform was developed in a cratonic environment, mainly as a product of deep weathering, and it is interpreted as a denuded surface, an etchplain formed by corrosion followed by erosion. The analysis of the relationships between relief, saprolite, and rock cover throughout time suggests that the most important factor for the classification of the present landscape is the duration of exposure of the crystalline basement at the surface, from the end of the Paleozoic and during the entire Mesozoic. This conclusion has essential relevance for the evaluation of the effects of Mesozoic tectonics and the powerful weathering under certain climatic conditions. It is estimated that this paleosurface would have initiated its development towards the end of the Paleozoic, but later modifying also the Jurassic volcanic rocks that preceded the rifting processes that lead to the opening of the Southern Atlantic Ocean. Finally, the tectonic activity during the early Tertiary produced the exhumation of the planation surface, which was buried by its own regolith, reactivating erosion surfaces and small drainage basins. However, it is possible that some areas of the planation surface had never been covered by other rocks, other than its own overlying weathering products. Our results suggest that the landscape features should not be assigned to Quaternary morphogenesis, but instead, they have evolved over a very long time, perhaps 100 Ma or even more. These observations refer to Mesozoic times, and therefore the time scale used for the discussion of the geomorphology of the Northern Patagonian Massif should be enlarged to properly analyze the evolution of the ancient landscapes of this cratonic region. This chapter contributes to the analysis of comparative studies of global geomorphology of cratonic areas, where planation surfaces record very long periods in which the speed of crustal deformation is highly compensated by planation processes.
Centro de Investigaciones Geológicas - Materia
-
Geología
Gondwana
Argentina
Northern Patagonian Massif
Etchplains
Granitic geomorphology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/127244
Ver los metadatos del registro completo
id |
SEDICI_eb76e2165898eef86ec8f565f04c07c3 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/127244 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Paleo-landscapes of the Northern Patagonian Massif, ArgentinaAguilera, Emilia YolandaRabassa, Jorge OscarAragón, EugenioJorge RabassaCliff OllierGeologíaGondwanaArgentinaNorthern Patagonian MassifEtchplainsGranitic geomorphologyThe dominant geomorphological unit of the Northern Patagonian Massif landscape is a regional planation surface, eroded across the crystalline basement (plutonic and metamorphic rocks), eruptive rocks of the Gondwana cycle (Early to Middle Carboniferous), and Jurassic volcanic rocks. The most important active climate during the genesis of this surface had a very significant role, developing intense chemical weathering extending to variable depths with the corresponding degradation of the rocky material exposed at the surface. Remnants of the weathering profiles, both outcropping and fossilized by burial, are identified and described. Such a particular mega-landform was developed in a cratonic environment, mainly as a product of deep weathering, and it is interpreted as a denuded surface, an etchplain formed by corrosion followed by erosion. The analysis of the relationships between relief, saprolite, and rock cover throughout time suggests that the most important factor for the classification of the present landscape is the duration of exposure of the crystalline basement at the surface, from the end of the Paleozoic and during the entire Mesozoic. This conclusion has essential relevance for the evaluation of the effects of Mesozoic tectonics and the powerful weathering under certain climatic conditions. It is estimated that this paleosurface would have initiated its development towards the end of the Paleozoic, but later modifying also the Jurassic volcanic rocks that preceded the rifting processes that lead to the opening of the Southern Atlantic Ocean. Finally, the tectonic activity during the early Tertiary produced the exhumation of the planation surface, which was buried by its own regolith, reactivating erosion surfaces and small drainage basins. However, it is possible that some areas of the planation surface had never been covered by other rocks, other than its own overlying weathering products. Our results suggest that the landscape features should not be assigned to Quaternary morphogenesis, but instead, they have evolved over a very long time, perhaps 100 Ma or even more. These observations refer to Mesozoic times, and therefore the time scale used for the discussion of the geomorphology of the Northern Patagonian Massif should be enlarged to properly analyze the evolution of the ancient landscapes of this cratonic region. This chapter contributes to the analysis of comparative studies of global geomorphology of cratonic areas, where planation surfaces record very long periods in which the speed of crustal deformation is highly compensated by planation processes.Centro de Investigaciones GeológicasSpringer2014-02-22info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf423-445http://sedici.unlp.edu.ar/handle/10915/127244spainfo:eu-repo/semantics/altIdentifier/isbn/978-94-007-7702-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-94-007-7702-6_15info:eu-repo/semantics/altIdentifier/doi/10.1007/978-94-007-7702-6_15info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:13:27Zoai:sedici.unlp.edu.ar:10915/127244Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:13:28.009SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Paleo-landscapes of the Northern Patagonian Massif, Argentina |
title |
Paleo-landscapes of the Northern Patagonian Massif, Argentina |
spellingShingle |
Paleo-landscapes of the Northern Patagonian Massif, Argentina Aguilera, Emilia Yolanda Geología Gondwana Argentina Northern Patagonian Massif Etchplains Granitic geomorphology |
title_short |
Paleo-landscapes of the Northern Patagonian Massif, Argentina |
title_full |
Paleo-landscapes of the Northern Patagonian Massif, Argentina |
title_fullStr |
Paleo-landscapes of the Northern Patagonian Massif, Argentina |
title_full_unstemmed |
Paleo-landscapes of the Northern Patagonian Massif, Argentina |
title_sort |
Paleo-landscapes of the Northern Patagonian Massif, Argentina |
dc.creator.none.fl_str_mv |
Aguilera, Emilia Yolanda Rabassa, Jorge Oscar Aragón, Eugenio Jorge Rabassa Cliff Ollier |
author |
Aguilera, Emilia Yolanda |
author_facet |
Aguilera, Emilia Yolanda Rabassa, Jorge Oscar Aragón, Eugenio Jorge Rabassa Cliff Ollier |
author_role |
author |
author2 |
Rabassa, Jorge Oscar Aragón, Eugenio Jorge Rabassa Cliff Ollier |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Geología Gondwana Argentina Northern Patagonian Massif Etchplains Granitic geomorphology |
topic |
Geología Gondwana Argentina Northern Patagonian Massif Etchplains Granitic geomorphology |
dc.description.none.fl_txt_mv |
The dominant geomorphological unit of the Northern Patagonian Massif landscape is a regional planation surface, eroded across the crystalline basement (plutonic and metamorphic rocks), eruptive rocks of the Gondwana cycle (Early to Middle Carboniferous), and Jurassic volcanic rocks. The most important active climate during the genesis of this surface had a very significant role, developing intense chemical weathering extending to variable depths with the corresponding degradation of the rocky material exposed at the surface. Remnants of the weathering profiles, both outcropping and fossilized by burial, are identified and described. Such a particular mega-landform was developed in a cratonic environment, mainly as a product of deep weathering, and it is interpreted as a denuded surface, an etchplain formed by corrosion followed by erosion. The analysis of the relationships between relief, saprolite, and rock cover throughout time suggests that the most important factor for the classification of the present landscape is the duration of exposure of the crystalline basement at the surface, from the end of the Paleozoic and during the entire Mesozoic. This conclusion has essential relevance for the evaluation of the effects of Mesozoic tectonics and the powerful weathering under certain climatic conditions. It is estimated that this paleosurface would have initiated its development towards the end of the Paleozoic, but later modifying also the Jurassic volcanic rocks that preceded the rifting processes that lead to the opening of the Southern Atlantic Ocean. Finally, the tectonic activity during the early Tertiary produced the exhumation of the planation surface, which was buried by its own regolith, reactivating erosion surfaces and small drainage basins. However, it is possible that some areas of the planation surface had never been covered by other rocks, other than its own overlying weathering products. Our results suggest that the landscape features should not be assigned to Quaternary morphogenesis, but instead, they have evolved over a very long time, perhaps 100 Ma or even more. These observations refer to Mesozoic times, and therefore the time scale used for the discussion of the geomorphology of the Northern Patagonian Massif should be enlarged to properly analyze the evolution of the ancient landscapes of this cratonic region. This chapter contributes to the analysis of comparative studies of global geomorphology of cratonic areas, where planation surfaces record very long periods in which the speed of crustal deformation is highly compensated by planation processes. Centro de Investigaciones Geológicas |
description |
The dominant geomorphological unit of the Northern Patagonian Massif landscape is a regional planation surface, eroded across the crystalline basement (plutonic and metamorphic rocks), eruptive rocks of the Gondwana cycle (Early to Middle Carboniferous), and Jurassic volcanic rocks. The most important active climate during the genesis of this surface had a very significant role, developing intense chemical weathering extending to variable depths with the corresponding degradation of the rocky material exposed at the surface. Remnants of the weathering profiles, both outcropping and fossilized by burial, are identified and described. Such a particular mega-landform was developed in a cratonic environment, mainly as a product of deep weathering, and it is interpreted as a denuded surface, an etchplain formed by corrosion followed by erosion. The analysis of the relationships between relief, saprolite, and rock cover throughout time suggests that the most important factor for the classification of the present landscape is the duration of exposure of the crystalline basement at the surface, from the end of the Paleozoic and during the entire Mesozoic. This conclusion has essential relevance for the evaluation of the effects of Mesozoic tectonics and the powerful weathering under certain climatic conditions. It is estimated that this paleosurface would have initiated its development towards the end of the Paleozoic, but later modifying also the Jurassic volcanic rocks that preceded the rifting processes that lead to the opening of the Southern Atlantic Ocean. Finally, the tectonic activity during the early Tertiary produced the exhumation of the planation surface, which was buried by its own regolith, reactivating erosion surfaces and small drainage basins. However, it is possible that some areas of the planation surface had never been covered by other rocks, other than its own overlying weathering products. Our results suggest that the landscape features should not be assigned to Quaternary morphogenesis, but instead, they have evolved over a very long time, perhaps 100 Ma or even more. These observations refer to Mesozoic times, and therefore the time scale used for the discussion of the geomorphology of the Northern Patagonian Massif should be enlarged to properly analyze the evolution of the ancient landscapes of this cratonic region. This chapter contributes to the analysis of comparative studies of global geomorphology of cratonic areas, where planation surfaces record very long periods in which the speed of crustal deformation is highly compensated by planation processes. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion Capitulo de libro http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/127244 |
url |
http://sedici.unlp.edu.ar/handle/10915/127244 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-94-007-7702-6 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-94-007-7702-6_15 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-94-007-7702-6_15 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 423-445 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532759987912704 |
score |
13.001348 |